问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

石油勘探中的压裂是什么原理?

发布网友 发布时间:2022-05-01 12:17

我来回答

2个回答

热心网友 时间:2023-10-11 15:02

压裂 就是利用水力作用,使油层形成裂缝的一种方法,又称油层水力压裂。油层压裂工艺过程是用压裂车,把高压大排量具有一定粘度的液体挤入油层,当把油层压出许多裂缝后,加入支撑剂(如石英砂等)充填进裂缝,提高油层的渗透能力,以增加注水量(注水井)或产油量(油井)。常用的压裂液有水基压裂液、油基压裂液、乳状压裂液、泡沫压裂液及酸基压裂液5种基本类型。

热心网友 时间:2023-10-11 15:02

摘 要

深层低渗油气藏具有深埋,低渗,物性差的特点。同时,它们具有复杂的结构,小的断块,许多含油层和各种类型的油藏。因此,这种储层的开发是相对困难的,并且必须通过增加产量或使用其他特殊技术来实现有效的产量。在原始井眼中横向钻探或运行4in套管是非常重要的技术手段。使用侧钻或运行4in的套管可以充分挖掘剩余的石油潜力,改善注入和生产井的格局,并恢复生产能力。通过对该技术的压裂方案,压裂液和支撑剂的研究和分析,采用支撑剂段塞技术和变排量施工技术可以有效消除多条裂缝的影响。增加砂的比例,最好的阶段砂以形成裂纹的支撑形状可以达到较高的电导率;使用位移和液压喷射技术控制组件,避免失去对组件的控制;酸预处理技术可以有效减少潜在的裂缝和裂缝,提高施工成功率。通过实证评估,形成了一套适合中原油田的深层低渗透4in套管压裂技术和配套技术,对大量受损的套管井和老井进行了重复利用和改良。剩余油的潜力和储存。地层水平加快了中原油田油气田的开发,提高了油气田开发的总体效益。

关键词:压裂工艺;4in 套管;配套技术;效果评价

第一章 前言
在油气田的勘探开发中,井深大于3000m,渗透率小于50毫达西的油气藏称为深层低渗透油藏。这种油气藏是非常规油气藏,具有埋藏油层深,渗透率低,物性差,结构复杂,断层小,含油层多,储层类型多的特点。因此,这种储层的开发是相对困难的,并且必须通过增加产量或使用其他特殊技术来实现有效的产量。中原油田是典型的复杂断块油气田,油气藏较深,最深为4700米[1,2]。套管损坏的油井数量惊人,严重影响了油田的生存和发展。大量的套管损坏导致对注采井模式的损害以及不均衡的注采关系。水力压裂不仅是增加深层低渗透油气藏产量的主要方法,而且是生产必须采取的技术措施。由于中原油田已开采了30年,由于特殊的地质条件以及油田开发过程中实施的增产注水措施,套管的大面积破坏不仅破坏了注采井网,而且破坏了注采井网。也失去了控制和可恢复性。储量还*了增加产量和注入量的措施的实施,并增加了稳定油田产量的难度。为了改善井网的改组,增加剩余油的采收率并降低成本,采用4in套管和侧钻技术来增加注水控制储量和可采储量[3]。据统计,截至2010年12月,井下有230口4in套管井,有456口4in套管井被吊死,钻了300多条侧钻。四个套管井控制着相当一部分的地质储量。在大多数这些井中,它在开发井模型中起着重要作用,并且大多数井的生产水平低,剩余油含量丰富且潜力巨大。压裂改革具有非常重要的意义。根据实际情况,在老油田的技术改造中,原始井筒的侧向位移或在4in套管中的作业是极为重要的技术手段。使用侧钻或在4in的套管中运行可以充分挖掘剩余的油,并改善注采井的井眼。因此,深层低渗透四套管压裂技术需要更广泛,更深入的研究[4,5]。研究中原油田深低渗油气藏各类四套管井单层,次层压裂技术,对实现中原油田稳定增产和支持具有重要意义。

第二章 压裂方案设计
2.1选井选层及数据采集
在完善施工计划之前,必须对施工地剩余油储备的分布进行了解;岩石力学参数和垂直应力分布满足裂纹扩展的要求,地层能量保留和井况均满足施工要求。需要包括以下关键测算数据:
1.油气井参数:井的类型,井眼密度,固井质量,射孔条件,井下工具等;
2.油气层参数:渗透率,流体性质,岩石力学性质,垂直应力分布等;
3.压裂参数:压裂液性能,支撑剂性能,支撑剂填充层的电导率,抽水能力等;
4.经济参数:压裂规模(流体消耗,支持剂量),成本,油气价格,投资回收期等。完成矿区数据,*和套管数据,热力学数据,压裂液流变数据和其他数据,编辑这些数据,然后需要对压缩软件进行排序。

2.2 压裂技术优化
1、设计优化
压裂设计是压裂施工过程中的执行文件。其设计的合理性和科学性直接影响建筑物的质量和经济效益。常规压裂设计方法是在选择一定的压裂模型后,根据地层条件和设计能力确定压裂液体系和支撑剂类型,并定量计算所需的压裂液量,排量和支撑剂的顺利进行[6]。压裂增产措施有一系列考虑因素:储层流体供应能力,油井生产系统,压裂机理,压裂流体性质,支撑剂承载能力,施工控制和经济效果。然后全面找到最经济的设计方案,以最大限度地提高油井增产措施的效益[7]。压裂优化设计的基础是水力压裂的油藏工程研究,目的是获得最大的净现值。根据预压裂地层评价和压裂材料优化的结果,通过油藏数值模拟,水力压裂模拟和经济模型进行了单井压裂优化设计研究,包括:
(1)使用油藏模拟模块来预测在给定油藏条件下不同裂缝长度和电导率的累计产量。通常,接缝的长度与累积输出不线性相关。随着接缝长度的增加,累计产量的增长率将降低,并且所产生的斜率将相对平坦。
(2)使用水力压裂模拟软件确定不同接缝长度和电导率所需的施工规模和施工成本。随着接头长度的增加,建造成本也增加。
(3)将以上两个方面结合起来得出净现值曲线。曲线上有一个最佳点,对应于最佳点的接缝长度就是最佳接缝长度。在各种情况下,接缝的长度可以获得最大的净现值收益。与最佳接缝长度值相对应的是这种最佳设计的估计最大产量,最大净收入,最佳建筑规模和最经济的建筑成本[8]。
2、管柱组合
中原油田的4in套管井相对较深,管柱内径较小,摩擦较大,会给地面设备带来高压,造成设备损失大,并且受最大采油量的影响。 压力极限。 管道。 因此,根据4in套管井结构的特殊性,在4in套管压裂作业中,主要压裂管柱组合[9]为:
(1)将4in套管或4in套管从原来的井眼悬挂在侧井的侧井上的井,通常在管下方使用φ89mm的*和φ73mm的*作为衬管和*注入。
(2)整个井的4in套管压裂井使用N80×φ73mm的加厚管注入空井眼。
(3)根据实际情况,使用φ89mm的带套管的*,将尾管悬挂起来进行施工。2.3 施工技术
1、施工前置准备
套管井中的深层和低渗透率4的侧移是近年来开发的油水井大修技术。在压裂过程中,它受到多次断裂和弯曲摩擦的影响。过去,预流体体积大且砂比大。对于这种类型的井,斜轴用于消除多个裂缝。通过对多处裂缝的分析,为了降低早期筛查的风险,过去的主要方法是增加压裂液的粘度,增加预液量和控制射孔层的厚度。通过研究裂纹萌生,扩展规律和弯曲摩擦,确定了降低弯曲摩擦的方法,形成了支撑剂段塞技术,变排量施工技术,交联凝胶段塞技术,射孔优化技术等综合压裂技术。确定了井眼附近的摩擦阻力以及地层的失水特征和渗透率,从而确定了合理的压裂设计[10]。
通过综合的技术措施和减少滤料的方法,以及对水力压裂进行优化的模拟计算,压裂施工中的预液量减少到35%-45%。分析了井区附近的弯曲摩擦,并优化了预液消耗。抛光后的氧化皮可以有效地支撑裂纹并改善效果。为了获得具有高导电性的支撑裂纹,采用了高砂比施工技术。在优化泵注入程序时,根据地层渗透率和设计的单翼间隙长度,可以在设计计算期间根据对数分布或其他分布来分布裂缝中的电导率。支撑剂砂堤呈线性分布,并按6至8级添加砂,最高级砂比达到50%以上[11]。由于原始井段的生产或压裂,地层压力下降且流体损失增加。实施全面的过滤技术,例如过滤剂技术和粉末陶瓷过滤器过滤技术,有效地减少了地层的流体损失,增加了压裂液。效力。有效减少地层的流体损失是确保压裂成功的重要因素。减少滤失量的常用方法主要是使用滤失剂。当前,使用粉末陶瓷过滤器。粉末陶瓷的粒度为0.15-0.225mm或0.225-0.45mm。
2.裂缝高度控制
在水力压裂中,油气层的上,下阻隔层有时很小,压缩的裂缝有时会延伸到生产层之外并进入阻隔层。裂纹的垂直延伸不仅会导致裂纹高度过大,减小裂纹的长度,影响压裂效果,而且一旦进入附近的生产区域,很容易引起“窜”,造成水泡或管柱堵塞。为了有效地控制裂纹高度,近年来,国内外对裂纹高度增长的机理进行了大量研究。人们对影响裂纹高度的因素有了更广泛,更深入的了解,并且已经开发了各种控制裂纹高度的技术。对于压裂夹层较小的井,为了避免裂缝的扩展和窜出,需要采取措施来控制接缝高度:使用施工位移来控制接缝高度,优化施工位移并控制高度裂缝的扩展[12 ]和压力。压裂液的粘度越大,压裂高度越高。第三是使用浮动或下沉的导向剂来控制裂缝的向上或向下。

第三章 压裂液体系
3.1 理论基础
压裂液是水力压裂的关键组成部分。根据抽水顺序和功能不同,分为准备液,准备液,载砂液和驱替液。压裂液在压裂施工中的基本功能是:利用水力压裂形成裂缝并扩展裂缝;沿裂缝运输和散布支撑剂;压裂后,流体会最大程度地破坏胶水和回流,从而降低了冲击裂纹的影响。对油层的破坏使其在储层中形成一定长度的高电导率,从而支撑裂缝。压裂液的基本要求是与储层兼容,不会造成二次破坏,在施工过程中具有低摩擦力,并保持必要的粘弹性和低渗漏,并且易于在施工后快速回流以去除残留物,结构简单,工具容易,成本低等[13]。当前,广泛使用的水基压裂液技术已经相对成熟。针对中原油田高温,高深度,低渗透的油气藏特征,开发了低残留胶凝剂,高温延迟交联剂,新型降滤失剂和高活性。诸如表面活性剂和复合粘土稳定剂等压裂材料已经形成了一系列适用于不同储层和温度要求的含水胶冻压裂液系统。根据4in套管压裂井的实际情况,对系统中的几种主要助剂和添加剂进行了优化,评价了其性能,筛选出适合4in套管压裂井的高性能压裂液。
3.2 压裂液添加剂优选
1、增稠剂的筛选
水溶性聚合物可用作增稠剂,例如植物胶及其衍生物,纤维素衍生物(例如羧甲基纤维素,羟乙基纤维素等),生物聚合物和合成聚合物。为了满足套管井压裂中低渗透率的要求,有必要对压裂液交联体系进行改进和优化。 研究表明,目前常用的改性瓜尔胶具有低摩擦性能,并且是良好的减阻剂。 通过延迟交联,它可以形成低摩擦的压裂液[14]。

图1 原粉性能评价表
从图4中各种原粉的性能看水不溶物偏高则会使压裂液破胶残渣含量大,对支撑裂缝导流能力和储层造成伤害。综合考虑决定采用低残渣羟丙基胍胶作为稠化剂。

图2 低残渣羟丙基胍胶与常规胍胶性能对比表
2 、交联剂的优选
交联剂通过交联离子通过化学键将胶体分子链上的活性基团连接起来,形成具有粘弹性的三维网络胶冻。不同的交联剂具有不同的延迟交联性能,耐温性,抗剪切性和凝胶破坏性能。通过分析,选择了一种有机硼交联剂,克服了无机硼交联压裂液的瞬时交联,施工摩擦大,耐温性差的缺点。它也解决了有机金属交联剂的压力。很难破坏压裂液的胶水,严重破坏支撑裂缝的导电性,对机械剪切敏感,并且难以恢复粘弹性。 ZY-86有机硼交联剂是在硼酸盐和有机多羟基配体的复合溶液中诱导催化剂和助催化剂而形成的新型产品。根据油层温度的不同,ZY-86可用于处理80-130°C的油藏,交联速度可延长至3分钟以上,可以满足高温地层的压裂施工要求[ 15]。
图3不同浓度下的冻胶粘度
ZY-86 有机硼交联剂使用浓度为 0.1%-0.4%,随着使用浓度增加,粘度大幅度上升,但在高于 0.4%时发生脱水现象。

图4不同 pH 值下的交联时间
ZY-86 有机硼交联剂的交联速度取决于溶液的酸碱度,当 pH 值升高时,交联时间可达到 4min,因此在压裂液体系中还要加入一定的 PH 值调节剂。

图5 ZY-86 有机硼与同类产品的耐温性
ZY-86 有机硼交联剂可与胍胶等多种天然植物胶及其改性产品进行交联,在最佳的交联环境下,可满足 120℃地层的压裂施工要求。

3、高活性表面活性剂研究
研发的HY-605和HF605产品基于非离子表面活性剂和其他活性剂作为辅助剂。通过表面活性促进剂和多组分溶剂的协同作用,形成了新的高活性化学组成体系。HY-605和HF-605复合活性剂具有很强的表面活性。当在水中的剂量非常低时,它可以大大降低溶液的表面张力和界面张力(见图6)。

图6 液体表面活性剂数据

4、降滤失剂的优选
压裂施工过程中的损失不仅降低了压裂液的效率并影响了裂缝的几何尺寸,而且还因为滤液沿着裂缝壁纵向渗透到地层中,导致了乳化,阻水,溶胀和迁移。 粘土等。经过测试筛选后提出的新型油溶性降滤液剂,有30%以上的效果,可以有效控制液体的流失,对地层有一定的保护作用,因此可以适应压力的施工要求[16]。

图7不同降滤失剂的使用效果

5、复合型粘土稳定剂研究
试验评价了复合粘土稳定剂的使用效果,对地层水渗透性的伤害率为 38.46%;含有 3.0%的复合粘土稳定剂水溶液在相同条件下的伤害率仅为 1.35%。

图8 复合粘土稳定剂使用效果

6压裂液配方组成
压裂液配方研究包括配方的基本成分以及可以有效改善压裂液的其他添加剂的类型和最佳剂量。 例如交联剂,pH调节剂,破胶剂等,除了基本的化学作用外,在基本压裂液配方中,最佳使用范围还应与化学方法结合使用[17]。

图9 压裂液配方组成

一、支撑剂设计
在倾斜井的压裂操作中,由于产生许多平行的和相互竞争的裂缝,每个裂缝的宽度非常窄,并且由于平行裂缝之间的竞争,彼此之间的原始应力条件发生了变化,使得每个裂缝的原地应力增加,地层裂缝压力增加,并且狭窄的裂缝导致液体进入并产生高的入口流动摩擦。为了保持裂纹的存在,与单个裂纹相比,它需要更高的液压差。因此,在正式压裂之前或期间使用少量的砂子混合物。泵送的目的是在多个裂缝中筛分次生裂缝,以防止流体进入和扩散,增加主要裂缝的膨胀,并使裂缝变宽。足够大以提供所需的压裂砂混合物[18]。
支撑剂块的有效性在于其腐蚀作用。由于段塞很小,因此不会造成桥塞,因此流体可以继续以较高的位移进入裂缝并冲走某些通道。即使在段塞之前的裂缝开始处,也可以泵入低浓度的支撑剂,以冲洗掉从井眼到裂缝的障碍物。该技术的成功可以通过降低摩擦压力来衡量。支撑剂的量应基于摩擦压力是否降低来确定[19]。

图10 支撑剂段塞应用规律
支撑剂段塞技术段塞技术的关键点是:段塞的范围,使用量,支撑段塞的浓度和所用支撑剂的粒径。目前,在大口径井的现场处理中,预流体主要用于添加适量的淤泥。在每个平行裂缝中,含泥沙的液体将进入不同长度和宽度的裂缝,因为小的粉尘颗粒会迅速聚集在狭窄的裂缝中。阻碍液体流动的砂团的形成将防止裂缝进入和扩展。在较宽的裂缝中,它们会填满造成流体损失的间隙,从而提高液体利用率,并使裂缝更宽。最终结果是较小的裂纹停止发展,较大的裂纹变宽,因此较大的支撑剂颗粒可以顺利进入。基于此原理,目前在预流体中添加适量的淤泥是处理多处裂缝的最有效方法[20]。将低砂比的0.45〜0.90mm支撑剂添加到缓冲液中。另一个重要的用途是,含砂液体可在不完善的射孔和井附近复杂的裂缝结构中引起强烈的水力切割。这种高速含砂流体形成的水力切割效果可以帮助液体对各种因素形成的节流,弯曲结构和粗糙表面进行水力切割和抛光,从而使循环路径更加完美并减少摩擦。实验室测试结果和理论分析表明,节流效果越大,曲折度越高,表面越粗糙,效果越强,实施效果越明显。现场的建设经验也充分证明了这一点。因此,将低砂比支撑剂添加到缓冲液中的过程可以同时减少弯曲摩擦并减少多个裂缝的影响[21,22]。
根据井段长度模拟裂缝数量,分析摩擦力,综合考虑施工规模,确定支撑剂段塞的数量和粒径,并根据实际施工泵注入程序确定泵注入浓度。随着井段的增长,支撑剂段塞的体积应继续增加,但增加量将缓慢减少。对于短井,可能不使用此技术。

第四章 压裂效果评价

该井上部套管为原井套管,需卡封保护;自 2203m 以下为悬挂 4in 套管,采用 N80-φ89mm+N80-φ73mm *注入,因上下隔层厚度较小(上隔层 1.8m,下隔层 3.1m),本次压裂井段将 30#31#37# 包括进去,同时考虑地层滤失、多裂缝、弯曲摩阻等影响因素,决定前置冻胶中加入降滤失剂及粉陶,采用分段破胶、高效表面活性剂返排技术,尽可能减小地层伤害[22,23]。

图11 目的层数据表
该井 2008.5.8 完钻,是濮城油田的一口开窗侧钻井,完钻井深 2820m,详细小层数据如图11。

施工管柱:N80-φ89mm(2190m)+封隔器+N80-φ89mm(10m)+N80-φ73mm(10m)外加厚*,管脚:2210m;该井施工基本按设计执行,破裂压力 58.9MPa,加砂压力 41.5MPa,停泵压力28.7MPa,前置液 60m3,携砂液 61m3,加砂 0.9+15.2m3,平均砂比 24.9%,平均排量4.0m3/min,加入降滤失剂 600kg,套管打平衡压力 10.0MPa,施工非常顺利。该井压后产状为日产液 16.2m3,日产油 6.4t,含水 60%;截止 2011.02 已累计增油 1920.2t,有效期 300 天。

第四章 结论
经过项目研究,形成了一套适合中原油田的深层低渗透4in套管压裂技术和配套技术,实现了对大量受损套管井和老井的再利用,增加了开发潜力。油气藏产量的增加,加快了中原油田油气田的开发,提高了油气田开发的总体效益。在分析中原油田第四井套管应用和井深结构的基础上,在深低层单层压裂技术的完美技术的基础上进行了分层压裂技术的研究。支撑剂段塞技术和变排量施工技术的使用,可以有效消除多重裂缝的影响;增加砂比,使砂层形成最佳的裂纹支撑形状,并获得较高的电导率;通过排量和液压注入技术控制集管,避免失去对集管的控制;酸化预处理技术可以有效减少井底裂缝和裂缝,提高施工成功率。
参考文献
[1] 乐宏、杨兆中、范宇. 宁209井区裂缝控藏体积压裂技术研究与应用[J]. 西南石油大学学报(自然科学版), 2020, 42.202(05):90-102.
[2] 曾凌翔、郑云川、曾波. 威远区块页岩气水平井高效压裂工艺参数分析[J]. 天然气技术与经济, 2020, 14.83(05):40-45.
[3]崔博宇. 苏里格气田光套管分级压裂施工超压分析[D].中国石油大学(华东),2018.
[4]陈文生,胡桂霞,曹松江.4in套管井分层压裂管柱的研究与应用[J].内江科技,2013,34(12):84+73.
[5]李伟慧,伍俊.悬挂4in套管井压裂工艺技术研究[J].内蒙古石油化工,2013,39(21):126-127.
[6] Mojid Muhammed Rashik,Negash Berihun Mamo,Ablelah Hesham,Jufar Shiferaw Regassa,Adewumi Babatunde Kawthar. A state – of – art review on waterless gas shale fracturing technologies[J]. Journal of Petroleum Science and Engineering,2021,196.
[7]李金玉.提高压裂效果的方法[J].化学工程与装备,2020(11):54-55.
[8]殷世巍.页岩气高效压裂工艺技术优化研究[J].辽宁化工,2020,49(10):1330-1332.
[9] Kaiyu Cao,Prashanth Siddhamshetty,Yuchan Ahn,Mahmoud M. El-Halwagi,Joseph Sang-Il Kwon. Evaluating the spatiotemporal variability of water recovery ratios of shale gas wells and their effects on shale gas development[J]. Journal of Cleaner Proction,2020,276.
[10]马楠,姚磊,高郎,胡伟,葛荡荡.低渗透油藏增产增注工艺技术研究[J].石化技术,2020,27(07):141+350.
[11]李克智. 大牛地低渗气田水平井排水采气工艺技术研究[D].西南石油大学,2013.
[12] Sun Bin,Bin Sun,Wenting Zeng,Shuling Zhang,Dong Chen,Hongzhao Peng. Study on fracturing fluid filtration fracturing technology[J]. IOP Conference Series: Earth and Environmental Science,2020,546(5).
[13]张永飞,闫钰琦,李璐.水平井压裂工艺技术现状及展望[J].化工设计通讯,2020,46(06):278-279.
[14] Yuting He,Zhaozhong Yang,Yanfang Jiang,Xiaogang Li,Yongqing Zhang,Rui Song. A full three‐dimensional fracture propagation model for supercritical carbon dioxide fracturing[J]. Energy Science & Engineering,2020,8(8).
[15]王薇.低渗透油田老井蓄能压裂工艺技术[J].石油知识,2020(03):58-59.
[16]魏金辉,张栋,郭士英,李山山,徐长虹.低渗透储层交替脉冲压裂工艺技术[J].采油工程,2020(01):1-6+77.
[17]张增年,李华川,郑家伟,马升平,戴启平,付军刚.压裂设备应用评价及技术发展展望[J].钻采工艺,2020,43(02):41-44+3.
[18]黄凤楼.油田压裂增产改造工艺技术探讨[J].化学工程与装备,2020(03):148-149.
[19]曾凌翔,郑云川,蒲祖凤.页岩重复压裂工艺技术研究及应用[J].钻采工艺,2020,43(01):65-68+11.
[20]陈亚联.新型压裂技术应用分析[J].化工技术与开发,2020,49(01):38-41.
[21]张文宝,牛成飞,杨马庆.长庆油田致密油水平井体积压裂配套技术[J].石化技术,2019,26(12):57-58.
[22]王元,李文举,魏小强.特低渗油藏采油工艺技术措施[J].化学工程与装备,2019(11):78-79.
[23] Zhongwei Huang,Shikun Zhang,Ruiyue Yang,Xiaoguang Wu,Ran Li,Hongyuan Zhang,Pengpeng Hung. A review of liquid nitrogen fracturing technology[J]. Fuel,2020,266.

热心网友 时间:2023-10-11 15:02

压裂 就是利用水力作用,使油层形成裂缝的一种方法,又称油层水力压裂。油层压裂工艺过程是用压裂车,把高压大排量具有一定粘度的液体挤入油层,当把油层压出许多裂缝后,加入支撑剂(如石英砂等)充填进裂缝,提高油层的渗透能力,以增加注水量(注水井)或产油量(油井)。常用的压裂液有水基压裂液、油基压裂液、乳状压裂液、泡沫压裂液及酸基压裂液5种基本类型。

热心网友 时间:2023-10-11 15:02

摘 要

深层低渗油气藏具有深埋,低渗,物性差的特点。同时,它们具有复杂的结构,小的断块,许多含油层和各种类型的油藏。因此,这种储层的开发是相对困难的,并且必须通过增加产量或使用其他特殊技术来实现有效的产量。在原始井眼中横向钻探或运行4in套管是非常重要的技术手段。使用侧钻或运行4in的套管可以充分挖掘剩余的石油潜力,改善注入和生产井的格局,并恢复生产能力。通过对该技术的压裂方案,压裂液和支撑剂的研究和分析,采用支撑剂段塞技术和变排量施工技术可以有效消除多条裂缝的影响。增加砂的比例,最好的阶段砂以形成裂纹的支撑形状可以达到较高的电导率;使用位移和液压喷射技术控制组件,避免失去对组件的控制;酸预处理技术可以有效减少潜在的裂缝和裂缝,提高施工成功率。通过实证评估,形成了一套适合中原油田的深层低渗透4in套管压裂技术和配套技术,对大量受损的套管井和老井进行了重复利用和改良。剩余油的潜力和储存。地层水平加快了中原油田油气田的开发,提高了油气田开发的总体效益。

关键词:压裂工艺;4in 套管;配套技术;效果评价

第一章 前言
在油气田的勘探开发中,井深大于3000m,渗透率小于50毫达西的油气藏称为深层低渗透油藏。这种油气藏是非常规油气藏,具有埋藏油层深,渗透率低,物性差,结构复杂,断层小,含油层多,储层类型多的特点。因此,这种储层的开发是相对困难的,并且必须通过增加产量或使用其他特殊技术来实现有效的产量。中原油田是典型的复杂断块油气田,油气藏较深,最深为4700米[1,2]。套管损坏的油井数量惊人,严重影响了油田的生存和发展。大量的套管损坏导致对注采井模式的损害以及不均衡的注采关系。水力压裂不仅是增加深层低渗透油气藏产量的主要方法,而且是生产必须采取的技术措施。由于中原油田已开采了30年,由于特殊的地质条件以及油田开发过程中实施的增产注水措施,套管的大面积破坏不仅破坏了注采井网,而且破坏了注采井网。也失去了控制和可恢复性。储量还*了增加产量和注入量的措施的实施,并增加了稳定油田产量的难度。为了改善井网的改组,增加剩余油的采收率并降低成本,采用4in套管和侧钻技术来增加注水控制储量和可采储量[3]。据统计,截至2010年12月,井下有230口4in套管井,有456口4in套管井被吊死,钻了300多条侧钻。四个套管井控制着相当一部分的地质储量。在大多数这些井中,它在开发井模型中起着重要作用,并且大多数井的生产水平低,剩余油含量丰富且潜力巨大。压裂改革具有非常重要的意义。根据实际情况,在老油田的技术改造中,原始井筒的侧向位移或在4in套管中的作业是极为重要的技术手段。使用侧钻或在4in的套管中运行可以充分挖掘剩余的油,并改善注采井的井眼。因此,深层低渗透四套管压裂技术需要更广泛,更深入的研究[4,5]。研究中原油田深低渗油气藏各类四套管井单层,次层压裂技术,对实现中原油田稳定增产和支持具有重要意义。

第二章 压裂方案设计
2.1选井选层及数据采集
在完善施工计划之前,必须对施工地剩余油储备的分布进行了解;岩石力学参数和垂直应力分布满足裂纹扩展的要求,地层能量保留和井况均满足施工要求。需要包括以下关键测算数据:
1.油气井参数:井的类型,井眼密度,固井质量,射孔条件,井下工具等;
2.油气层参数:渗透率,流体性质,岩石力学性质,垂直应力分布等;
3.压裂参数:压裂液性能,支撑剂性能,支撑剂填充层的电导率,抽水能力等;
4.经济参数:压裂规模(流体消耗,支持剂量),成本,油气价格,投资回收期等。完成矿区数据,*和套管数据,热力学数据,压裂液流变数据和其他数据,编辑这些数据,然后需要对压缩软件进行排序。

2.2 压裂技术优化
1、设计优化
压裂设计是压裂施工过程中的执行文件。其设计的合理性和科学性直接影响建筑物的质量和经济效益。常规压裂设计方法是在选择一定的压裂模型后,根据地层条件和设计能力确定压裂液体系和支撑剂类型,并定量计算所需的压裂液量,排量和支撑剂的顺利进行[6]。压裂增产措施有一系列考虑因素:储层流体供应能力,油井生产系统,压裂机理,压裂流体性质,支撑剂承载能力,施工控制和经济效果。然后全面找到最经济的设计方案,以最大限度地提高油井增产措施的效益[7]。压裂优化设计的基础是水力压裂的油藏工程研究,目的是获得最大的净现值。根据预压裂地层评价和压裂材料优化的结果,通过油藏数值模拟,水力压裂模拟和经济模型进行了单井压裂优化设计研究,包括:
(1)使用油藏模拟模块来预测在给定油藏条件下不同裂缝长度和电导率的累计产量。通常,接缝的长度与累积输出不线性相关。随着接缝长度的增加,累计产量的增长率将降低,并且所产生的斜率将相对平坦。
(2)使用水力压裂模拟软件确定不同接缝长度和电导率所需的施工规模和施工成本。随着接头长度的增加,建造成本也增加。
(3)将以上两个方面结合起来得出净现值曲线。曲线上有一个最佳点,对应于最佳点的接缝长度就是最佳接缝长度。在各种情况下,接缝的长度可以获得最大的净现值收益。与最佳接缝长度值相对应的是这种最佳设计的估计最大产量,最大净收入,最佳建筑规模和最经济的建筑成本[8]。
2、管柱组合
中原油田的4in套管井相对较深,管柱内径较小,摩擦较大,会给地面设备带来高压,造成设备损失大,并且受最大采油量的影响。 压力极限。 管道。 因此,根据4in套管井结构的特殊性,在4in套管压裂作业中,主要压裂管柱组合[9]为:
(1)将4in套管或4in套管从原来的井眼悬挂在侧井的侧井上的井,通常在管下方使用φ89mm的*和φ73mm的*作为衬管和*注入。
(2)整个井的4in套管压裂井使用N80×φ73mm的加厚管注入空井眼。
(3)根据实际情况,使用φ89mm的带套管的*,将尾管悬挂起来进行施工。2.3 施工技术
1、施工前置准备
套管井中的深层和低渗透率4的侧移是近年来开发的油水井大修技术。在压裂过程中,它受到多次断裂和弯曲摩擦的影响。过去,预流体体积大且砂比大。对于这种类型的井,斜轴用于消除多个裂缝。通过对多处裂缝的分析,为了降低早期筛查的风险,过去的主要方法是增加压裂液的粘度,增加预液量和控制射孔层的厚度。通过研究裂纹萌生,扩展规律和弯曲摩擦,确定了降低弯曲摩擦的方法,形成了支撑剂段塞技术,变排量施工技术,交联凝胶段塞技术,射孔优化技术等综合压裂技术。确定了井眼附近的摩擦阻力以及地层的失水特征和渗透率,从而确定了合理的压裂设计[10]。
通过综合的技术措施和减少滤料的方法,以及对水力压裂进行优化的模拟计算,压裂施工中的预液量减少到35%-45%。分析了井区附近的弯曲摩擦,并优化了预液消耗。抛光后的氧化皮可以有效地支撑裂纹并改善效果。为了获得具有高导电性的支撑裂纹,采用了高砂比施工技术。在优化泵注入程序时,根据地层渗透率和设计的单翼间隙长度,可以在设计计算期间根据对数分布或其他分布来分布裂缝中的电导率。支撑剂砂堤呈线性分布,并按6至8级添加砂,最高级砂比达到50%以上[11]。由于原始井段的生产或压裂,地层压力下降且流体损失增加。实施全面的过滤技术,例如过滤剂技术和粉末陶瓷过滤器过滤技术,有效地减少了地层的流体损失,增加了压裂液。效力。有效减少地层的流体损失是确保压裂成功的重要因素。减少滤失量的常用方法主要是使用滤失剂。当前,使用粉末陶瓷过滤器。粉末陶瓷的粒度为0.15-0.225mm或0.225-0.45mm。
2.裂缝高度控制
在水力压裂中,油气层的上,下阻隔层有时很小,压缩的裂缝有时会延伸到生产层之外并进入阻隔层。裂纹的垂直延伸不仅会导致裂纹高度过大,减小裂纹的长度,影响压裂效果,而且一旦进入附近的生产区域,很容易引起“窜”,造成水泡或管柱堵塞。为了有效地控制裂纹高度,近年来,国内外对裂纹高度增长的机理进行了大量研究。人们对影响裂纹高度的因素有了更广泛,更深入的了解,并且已经开发了各种控制裂纹高度的技术。对于压裂夹层较小的井,为了避免裂缝的扩展和窜出,需要采取措施来控制接缝高度:使用施工位移来控制接缝高度,优化施工位移并控制高度裂缝的扩展[12 ]和压力。压裂液的粘度越大,压裂高度越高。第三是使用浮动或下沉的导向剂来控制裂缝的向上或向下。

第三章 压裂液体系
3.1 理论基础
压裂液是水力压裂的关键组成部分。根据抽水顺序和功能不同,分为准备液,准备液,载砂液和驱替液。压裂液在压裂施工中的基本功能是:利用水力压裂形成裂缝并扩展裂缝;沿裂缝运输和散布支撑剂;压裂后,流体会最大程度地破坏胶水和回流,从而降低了冲击裂纹的影响。对油层的破坏使其在储层中形成一定长度的高电导率,从而支撑裂缝。压裂液的基本要求是与储层兼容,不会造成二次破坏,在施工过程中具有低摩擦力,并保持必要的粘弹性和低渗漏,并且易于在施工后快速回流以去除残留物,结构简单,工具容易,成本低等[13]。当前,广泛使用的水基压裂液技术已经相对成熟。针对中原油田高温,高深度,低渗透的油气藏特征,开发了低残留胶凝剂,高温延迟交联剂,新型降滤失剂和高活性。诸如表面活性剂和复合粘土稳定剂等压裂材料已经形成了一系列适用于不同储层和温度要求的含水胶冻压裂液系统。根据4in套管压裂井的实际情况,对系统中的几种主要助剂和添加剂进行了优化,评价了其性能,筛选出适合4in套管压裂井的高性能压裂液。
3.2 压裂液添加剂优选
1、增稠剂的筛选
水溶性聚合物可用作增稠剂,例如植物胶及其衍生物,纤维素衍生物(例如羧甲基纤维素,羟乙基纤维素等),生物聚合物和合成聚合物。为了满足套管井压裂中低渗透率的要求,有必要对压裂液交联体系进行改进和优化。 研究表明,目前常用的改性瓜尔胶具有低摩擦性能,并且是良好的减阻剂。 通过延迟交联,它可以形成低摩擦的压裂液[14]。

图1 原粉性能评价表
从图4中各种原粉的性能看水不溶物偏高则会使压裂液破胶残渣含量大,对支撑裂缝导流能力和储层造成伤害。综合考虑决定采用低残渣羟丙基胍胶作为稠化剂。

图2 低残渣羟丙基胍胶与常规胍胶性能对比表
2 、交联剂的优选
交联剂通过交联离子通过化学键将胶体分子链上的活性基团连接起来,形成具有粘弹性的三维网络胶冻。不同的交联剂具有不同的延迟交联性能,耐温性,抗剪切性和凝胶破坏性能。通过分析,选择了一种有机硼交联剂,克服了无机硼交联压裂液的瞬时交联,施工摩擦大,耐温性差的缺点。它也解决了有机金属交联剂的压力。很难破坏压裂液的胶水,严重破坏支撑裂缝的导电性,对机械剪切敏感,并且难以恢复粘弹性。 ZY-86有机硼交联剂是在硼酸盐和有机多羟基配体的复合溶液中诱导催化剂和助催化剂而形成的新型产品。根据油层温度的不同,ZY-86可用于处理80-130°C的油藏,交联速度可延长至3分钟以上,可以满足高温地层的压裂施工要求[ 15]。
图3不同浓度下的冻胶粘度
ZY-86 有机硼交联剂使用浓度为 0.1%-0.4%,随着使用浓度增加,粘度大幅度上升,但在高于 0.4%时发生脱水现象。

图4不同 pH 值下的交联时间
ZY-86 有机硼交联剂的交联速度取决于溶液的酸碱度,当 pH 值升高时,交联时间可达到 4min,因此在压裂液体系中还要加入一定的 PH 值调节剂。

图5 ZY-86 有机硼与同类产品的耐温性
ZY-86 有机硼交联剂可与胍胶等多种天然植物胶及其改性产品进行交联,在最佳的交联环境下,可满足 120℃地层的压裂施工要求。

3、高活性表面活性剂研究
研发的HY-605和HF605产品基于非离子表面活性剂和其他活性剂作为辅助剂。通过表面活性促进剂和多组分溶剂的协同作用,形成了新的高活性化学组成体系。HY-605和HF-605复合活性剂具有很强的表面活性。当在水中的剂量非常低时,它可以大大降低溶液的表面张力和界面张力(见图6)。

图6 液体表面活性剂数据

4、降滤失剂的优选
压裂施工过程中的损失不仅降低了压裂液的效率并影响了裂缝的几何尺寸,而且还因为滤液沿着裂缝壁纵向渗透到地层中,导致了乳化,阻水,溶胀和迁移。 粘土等。经过测试筛选后提出的新型油溶性降滤液剂,有30%以上的效果,可以有效控制液体的流失,对地层有一定的保护作用,因此可以适应压力的施工要求[16]。

图7不同降滤失剂的使用效果

5、复合型粘土稳定剂研究
试验评价了复合粘土稳定剂的使用效果,对地层水渗透性的伤害率为 38.46%;含有 3.0%的复合粘土稳定剂水溶液在相同条件下的伤害率仅为 1.35%。

图8 复合粘土稳定剂使用效果

6压裂液配方组成
压裂液配方研究包括配方的基本成分以及可以有效改善压裂液的其他添加剂的类型和最佳剂量。 例如交联剂,pH调节剂,破胶剂等,除了基本的化学作用外,在基本压裂液配方中,最佳使用范围还应与化学方法结合使用[17]。

图9 压裂液配方组成

一、支撑剂设计
在倾斜井的压裂操作中,由于产生许多平行的和相互竞争的裂缝,每个裂缝的宽度非常窄,并且由于平行裂缝之间的竞争,彼此之间的原始应力条件发生了变化,使得每个裂缝的原地应力增加,地层裂缝压力增加,并且狭窄的裂缝导致液体进入并产生高的入口流动摩擦。为了保持裂纹的存在,与单个裂纹相比,它需要更高的液压差。因此,在正式压裂之前或期间使用少量的砂子混合物。泵送的目的是在多个裂缝中筛分次生裂缝,以防止流体进入和扩散,增加主要裂缝的膨胀,并使裂缝变宽。足够大以提供所需的压裂砂混合物[18]。
支撑剂块的有效性在于其腐蚀作用。由于段塞很小,因此不会造成桥塞,因此流体可以继续以较高的位移进入裂缝并冲走某些通道。即使在段塞之前的裂缝开始处,也可以泵入低浓度的支撑剂,以冲洗掉从井眼到裂缝的障碍物。该技术的成功可以通过降低摩擦压力来衡量。支撑剂的量应基于摩擦压力是否降低来确定[19]。

图10 支撑剂段塞应用规律
支撑剂段塞技术段塞技术的关键点是:段塞的范围,使用量,支撑段塞的浓度和所用支撑剂的粒径。目前,在大口径井的现场处理中,预流体主要用于添加适量的淤泥。在每个平行裂缝中,含泥沙的液体将进入不同长度和宽度的裂缝,因为小的粉尘颗粒会迅速聚集在狭窄的裂缝中。阻碍液体流动的砂团的形成将防止裂缝进入和扩展。在较宽的裂缝中,它们会填满造成流体损失的间隙,从而提高液体利用率,并使裂缝更宽。最终结果是较小的裂纹停止发展,较大的裂纹变宽,因此较大的支撑剂颗粒可以顺利进入。基于此原理,目前在预流体中添加适量的淤泥是处理多处裂缝的最有效方法[20]。将低砂比的0.45〜0.90mm支撑剂添加到缓冲液中。另一个重要的用途是,含砂液体可在不完善的射孔和井附近复杂的裂缝结构中引起强烈的水力切割。这种高速含砂流体形成的水力切割效果可以帮助液体对各种因素形成的节流,弯曲结构和粗糙表面进行水力切割和抛光,从而使循环路径更加完美并减少摩擦。实验室测试结果和理论分析表明,节流效果越大,曲折度越高,表面越粗糙,效果越强,实施效果越明显。现场的建设经验也充分证明了这一点。因此,将低砂比支撑剂添加到缓冲液中的过程可以同时减少弯曲摩擦并减少多个裂缝的影响[21,22]。
根据井段长度模拟裂缝数量,分析摩擦力,综合考虑施工规模,确定支撑剂段塞的数量和粒径,并根据实际施工泵注入程序确定泵注入浓度。随着井段的增长,支撑剂段塞的体积应继续增加,但增加量将缓慢减少。对于短井,可能不使用此技术。

第四章 压裂效果评价

该井上部套管为原井套管,需卡封保护;自 2203m 以下为悬挂 4in 套管,采用 N80-φ89mm+N80-φ73mm *注入,因上下隔层厚度较小(上隔层 1.8m,下隔层 3.1m),本次压裂井段将 30#31#37# 包括进去,同时考虑地层滤失、多裂缝、弯曲摩阻等影响因素,决定前置冻胶中加入降滤失剂及粉陶,采用分段破胶、高效表面活性剂返排技术,尽可能减小地层伤害[22,23]。

图11 目的层数据表
该井 2008.5.8 完钻,是濮城油田的一口开窗侧钻井,完钻井深 2820m,详细小层数据如图11。

施工管柱:N80-φ89mm(2190m)+封隔器+N80-φ89mm(10m)+N80-φ73mm(10m)外加厚*,管脚:2210m;该井施工基本按设计执行,破裂压力 58.9MPa,加砂压力 41.5MPa,停泵压力28.7MPa,前置液 60m3,携砂液 61m3,加砂 0.9+15.2m3,平均砂比 24.9%,平均排量4.0m3/min,加入降滤失剂 600kg,套管打平衡压力 10.0MPa,施工非常顺利。该井压后产状为日产液 16.2m3,日产油 6.4t,含水 60%;截止 2011.02 已累计增油 1920.2t,有效期 300 天。

第四章 结论
经过项目研究,形成了一套适合中原油田的深层低渗透4in套管压裂技术和配套技术,实现了对大量受损套管井和老井的再利用,增加了开发潜力。油气藏产量的增加,加快了中原油田油气田的开发,提高了油气田开发的总体效益。在分析中原油田第四井套管应用和井深结构的基础上,在深低层单层压裂技术的完美技术的基础上进行了分层压裂技术的研究。支撑剂段塞技术和变排量施工技术的使用,可以有效消除多重裂缝的影响;增加砂比,使砂层形成最佳的裂纹支撑形状,并获得较高的电导率;通过排量和液压注入技术控制集管,避免失去对集管的控制;酸化预处理技术可以有效减少井底裂缝和裂缝,提高施工成功率。
参考文献
[1] 乐宏、杨兆中、范宇. 宁209井区裂缝控藏体积压裂技术研究与应用[J]. 西南石油大学学报(自然科学版), 2020, 42.202(05):90-102.
[2] 曾凌翔、郑云川、曾波. 威远区块页岩气水平井高效压裂工艺参数分析[J]. 天然气技术与经济, 2020, 14.83(05):40-45.
[3]崔博宇. 苏里格气田光套管分级压裂施工超压分析[D].中国石油大学(华东),2018.
[4]陈文生,胡桂霞,曹松江.4in套管井分层压裂管柱的研究与应用[J].内江科技,2013,34(12):84+73.
[5]李伟慧,伍俊.悬挂4in套管井压裂工艺技术研究[J].内蒙古石油化工,2013,39(21):126-127.
[6] Mojid Muhammed Rashik,Negash Berihun Mamo,Ablelah Hesham,Jufar Shiferaw Regassa,Adewumi Babatunde Kawthar. A state – of – art review on waterless gas shale fracturing technologies[J]. Journal of Petroleum Science and Engineering,2021,196.
[7]李金玉.提高压裂效果的方法[J].化学工程与装备,2020(11):54-55.
[8]殷世巍.页岩气高效压裂工艺技术优化研究[J].辽宁化工,2020,49(10):1330-1332.
[9] Kaiyu Cao,Prashanth Siddhamshetty,Yuchan Ahn,Mahmoud M. El-Halwagi,Joseph Sang-Il Kwon. Evaluating the spatiotemporal variability of water recovery ratios of shale gas wells and their effects on shale gas development[J]. Journal of Cleaner Proction,2020,276.
[10]马楠,姚磊,高郎,胡伟,葛荡荡.低渗透油藏增产增注工艺技术研究[J].石化技术,2020,27(07):141+350.
[11]李克智. 大牛地低渗气田水平井排水采气工艺技术研究[D].西南石油大学,2013.
[12] Sun Bin,Bin Sun,Wenting Zeng,Shuling Zhang,Dong Chen,Hongzhao Peng. Study on fracturing fluid filtration fracturing technology[J]. IOP Conference Series: Earth and Environmental Science,2020,546(5).
[13]张永飞,闫钰琦,李璐.水平井压裂工艺技术现状及展望[J].化工设计通讯,2020,46(06):278-279.
[14] Yuting He,Zhaozhong Yang,Yanfang Jiang,Xiaogang Li,Yongqing Zhang,Rui Song. A full three‐dimensional fracture propagation model for supercritical carbon dioxide fracturing[J]. Energy Science & Engineering,2020,8(8).
[15]王薇.低渗透油田老井蓄能压裂工艺技术[J].石油知识,2020(03):58-59.
[16]魏金辉,张栋,郭士英,李山山,徐长虹.低渗透储层交替脉冲压裂工艺技术[J].采油工程,2020(01):1-6+77.
[17]张增年,李华川,郑家伟,马升平,戴启平,付军刚.压裂设备应用评价及技术发展展望[J].钻采工艺,2020,43(02):41-44+3.
[18]黄凤楼.油田压裂增产改造工艺技术探讨[J].化学工程与装备,2020(03):148-149.
[19]曾凌翔,郑云川,蒲祖凤.页岩重复压裂工艺技术研究及应用[J].钻采工艺,2020,43(01):65-68+11.
[20]陈亚联.新型压裂技术应用分析[J].化工技术与开发,2020,49(01):38-41.
[21]张文宝,牛成飞,杨马庆.长庆油田致密油水平井体积压裂配套技术[J].石化技术,2019,26(12):57-58.
[22]王元,李文举,魏小强.特低渗油藏采油工艺技术措施[J].化学工程与装备,2019(11):78-79.
[23] Zhongwei Huang,Shikun Zhang,Ruiyue Yang,Xiaoguang Wu,Ran Li,Hongyuan Zhang,Pengpeng Hung. A review of liquid nitrogen fracturing technology[J]. Fuel,2020,266.
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
怎么在拼多多快速拍单(拼多多快速拍单技巧) 拼多多卖家怎么拍单快一点(拼多多卖家如何快速拍单) 做拼多多店群怎么快速拍单(如何快速生成拼多多店群订单) 拼多多店群如何拍单啊(拼多多店群怎么下单) 求外贸英语高手:这句怎么翻译?The pallets for sheet consignments are... 龙阳泣鱼的意思是什么 龙阳泣鱼的意思 怎么理解龙阳泣鱼的意思 宁德时代代码 他们说用Qlarité (Qlarite)可以抗衰? 关于Qlarité,请问效果怎样? 测井车、修井车、通井车、压裂车、酸化车是干什么用的? 压裂车是做什么的 石油压裂车上用的柱塞泵型号和规格,压裂车的厂家有哪些? 进口一台油田用压裂车,需交什么费税?分别是多少?比如在国外100万,进口以后办完牌照,得需要多少钱? 哪些公司有油田用的压裂车组? 有没有介绍石油压裂设备(压裂车、混砂车等)的相关的书籍? 石油压裂车应该具备哪些性能和特点呢? 外墙防水层外的岩棉板怎么固定 岩棉吸音板吊顶和施工工艺 如何防止外墙岩棉板脱落 岩棉对使用环境的要求。 工地做岩棉板穿什么保护谢谢服装防止痒 岩棉施工要点介绍 用岩棉需要注意什么 岩棉板保温材料安装时要注意什么问题? 岩棉板外墙保温的做法 岩棉板在保温的时候要注意什么? 华为平板m3和m3青春版哪个好,有什么不同 猪肉要煮多久才熟 猪头肉煮5分钟蒸10分钟可以熟透吗 石油压裂车 是否属于强制性认证的范围? 长庆油田压裂大队是干什么的? 国产页岩气压裂车的发明,为什么能拉动几十个产业的升级? 中国石油出口关税是多少啊? 大港油田公司怎么样? UTEX压裂车柱塞盘根在哪购买质量比较有保障? 华为面试题之井盖为什么是圆的 电视上的无线蓝牙耳机能用电脑上吗 华为面试题目,求答案,为什么我选择华为,为什么华为选择我? 2021年摩羯座大预言 解析今年财运如何 2021年摩羯座的事业运势详解 摩羯座运势2021年运势详解 摩羯座一定要知道!摩羯座2021年运势如何? 2021摩羯座会好起来吗 摩羯座一定想知道!2021年摩羯座的整体运势如何呢? 摩羯座2021年哪方面运势大增 运程好不好 摩羯座一定要知道!2021年摩羯座的运势究竟如何? 摩羯座运势? 摩羯座2021年运势 2021年下半年摩羯座运势?