发布网友 发布时间:2023-12-01 03:59
共1个回答
热心网友 时间:2024-05-27 12:44
多值逻辑
many-valued logic
一种非经典的逻辑系统。在经典逻辑中,每一个命题皆取真假二值之一为值 ,每一命题或者真或者假。但实际上,一个命题可以不是二值的。命题可以有三值,推而广之,还可以有四值,五值。因此,对每一自然数n,有n值,以至于无穷多值。研究这类命题之间逻辑关系的理论,即为多值逻辑。多值逻辑建立于20世纪20年代初,由卢卡西维茨和美国逻辑学家E.L.波斯特创建。在60年代获得了新的推广,从多值的线序域推广到多值的偏序域,建立了格值逻辑。70年代后,多值逻辑被用于计算机科学和人工智能等方面。多值逻辑和经典逻辑一样,也可以用公理方法系统化,建立演算系统。
多值逻辑是有多于两个的可能的真值的逻辑演算。传统上,逻辑演算是二值的,就是说对于任何命题都只有两个可能的真值,真和假(它一般对应于我们直觉概念的真实和虚假)。但是二值只有一个可以被指派的可能的真值范围,已经开发了一些其它逻辑系统,带有对二值的变异,或带有多于两个可能的真值指派。
在经典的二值方案中,真和假是确定性的值: 命题要么是真要么是假(互斥的),并且如果命题没有其中一个值,则根据定义它必定有另一个值。这个理由就是排中律: P ∨ ¬P—也就是说,肯定或它否定总有一个成立。
要记住的一点是逻辑是跨越各种变换而保持某些命题的特性的系统。在经典逻辑中,这个特性是真实性: 在有效的论证中,推导出来的命题的真实性由应用保持这个特性的有效步骤来保证。但是,这个特性不是必须是真实性特性;它也可以是其它某种特性。
例如,保持的特性可以是证实性(justification),这是直觉逻辑的基本概念。所以,命题不是真或假;转而,它是证实的或未证实的。证实性和真实性之间的关键区别,在这个场合下,是排中律不成立: 非未证实的命题不必然的是证实的;转而,它只是没有被证明是未证实的。关键区别是保持的特性的确定性: 你可以证明 P 是证实的,P 是非证实的,或者不能证明任何一个。有效的论证保持跨越变换的证实性,所以从证实的命题推导出来的命题仍是证实的。但是,有些经典逻辑中的证明依赖于排中律;因为在这种方案中不能使用排中律,有些命题就不能用这种方式来证明了。
模糊逻辑是由卢菲特·泽德作为对模糊性的形式化而介入的;模糊就是谓词可以非绝对性的应用于物体的现象,但是有一个特定的程度,并且可以有边界状况。这种逻辑可以用来处理复合三段论悖论(sorites)。不再是两个真值真和假,模糊逻辑采用了 0,对应于绝对假,和 1,对应于绝对真之间的无限多的值。边界状况可以因为被指派为真值 0.5。你可以应用这种逻辑系统作为模糊集合论的理论基础。