导弹追踪问题在实际中的应用有那些?
发布网友
发布时间:2022-05-02 01:19
我来回答
共5个回答
热心网友
时间:2022-06-26 02:50
红外制导:红外制导是利用红外探测器捕获和跟踪目标自身辐射的能量来实现寻地制导的技术。红外制导技术是精确制导武器一个十分重要的技术手段,红外制导技术分为红外成像制导技术和红外非成像制导技术两大类。
红外非成像制导技术是一种被动红外寻地制导技术,任何绝对温度零度以上的物体,由于原子和分子结构内部的热运动,而向外界辐射包括红外波段在内的电磁波能量,红外非成像制导技术就是利用红外探测器捕获和跟踪目标自身所辐射的红外能量来实现精确制导的一种技术手段。它的特点是制导精度高,不受无线电干扰的影响;可昼夜作战;由于采用被动寻的方式,攻击隐蔽性好。但它的正常工作受云、雾和烟尘的影响;并有可能被曳光弹、红外诱饵、云层反射的阳光和其它热源*,偏离和丢失目标。此外,红外制导系统作用距离有限,所以一般用作近程武器的制导系统或远程武器的末制导系统。
红外成像制导是利用红外探测器探测目标的红外辐射,以捕获目标红外图象的制导技术,其图象质量与电视相近,但却可在电视制导系统难以工作的夜间和低能见度下作战。红外成像制导技术已成为制导技术的一个主要发展方向。实现红外成像的途径有许多,主要有以下两种:(1)多元红外探测器线阵扫描成像制导;(2)多元红外探测器平面阵的非扫描成像探测器(通常称为凝视焦面阵红外成像制导系统)。红外成像探测器从70年代以来已由多元线阵发展到面阵,从近红外发展到远红外。红外凝视焦面阵列探测器的元件数,对近红外已达107个,对于远红外已达105个,探测率已达1012~1014量级。红外成像制导系统的灵敏度和空间分辨率都很高,动态跟踪范围大,可达1500 ~1800,有效作用距离远,抗干扰性好。与非成像制导技术相比,红外成像制导系统具有更好的目标识别能力和制导精度。全天候作战能力和抗干扰能力也有较大改善。但成本较高,全天候作战能力仍不如微波和毫米波制导系统。
毫米波雷达制导:通常毫米波是指30~300GHz频域(波长为1~10mm)的电磁波。毫米波的波长介于厘米波和光波之间,因此毫米波雷达制导兼有微波制导和光电制导的优点。同厘米波导引头相比,毫米波导引头具有体积小、质量轻和空间分辨率高的特点。与红外、激光、电视等光学导引头相比,毫米波导引头穿透雾、烟、灰尘的能力强,具有全天候(大雨天除外)全天时的特点。另外,毫米波导引头的抗干扰、反隐身能力也优于其他微波导引头。
毫米波雷达制导技术的发展历程
国外毫米波雷达制导技术研究始于20世纪70年代,80年代初研制成工程化导引头,并进行了挂飞试验。但由于采用分立器件,工艺复杂,价格昂贵,妨碍了部署使用。从1986年开始,美国国防部为了解决毫米波分立元器件离散以及价格昂贵的问题。由国防高级研究项目局(DARPA)发起并主持了一项历时近8年(1986~1994年)的微波鹰米波单片集成电路计划(MIMIC)。该计划旨在开发1~100GHz频率范围内的各种单片集成电路,并要求成本低、性能好、体积小、可靠性高和具有批量生产能力。该计划的顺利实施并完成,直接推动了毫米波制导技术的飞跃发展。
20世纪90年代以来,随着军事斗争对毫米波制导需求的增长,以及在研制毫米波发射机、接收机、天线和无源器件等各个方面的重大突破,毫米波制导技术的发展进入了一个新的阶段。
毫米波雷达制导技术的发展现状
近几年,随着计算机技术、毫米波固态技术、信号处理技术、光电子技术以及材料、器件、结构、工艺的发展,固体共形相控阵天线和毫米波集成电路技术等相关技术的成功应用为毫米波导引头性能的提高打下了良好的基础。
毫米波导引头的关键技术之一是天线技术。常用的毫米波雷达天线有以下几种:反射面天线、透镜天线、喇叭天线、介质天线、漏波天线、微带天线、相控阵列天线等。固态共形相控阵天线由于采用固态器件,能实现导引头头罩与天线合二为一,充分利用了导弹的有效空间,使复合探测更容易实现,是非常理想的弹载天线系统,正得到世界各国的高度重视。光控毫米波转向天线技术,利用了基于毫米波与光学方法形成的电子一空穴等离子体栅的相互作用,从而可以得到灵活而廉价的相控阵天线。目前,在毫米波导引头天线罩上应用较多的是氮化硅等陶瓷材料。
发射/接收技术是毫米波雷达的另一项关键技术。毫米波发射系统的射频源大致可分为三类:第一类是电真空器件构成的源:第二类是固态器件构成的源;第三类是其他方式产生的源,例如光导毫米波源等。在电真空器件中,已得到成熟发展的是回旋管。目前回旋管毫米波源的效率可达40%,60GHz频率上源的连续功率达200kW。俄罗斯和美国已经采用回旋管器件装备雷达和制导系统。在目前研制出来的各类固态器件中。雪崩二极管(IMPATT)和耿氏二极管(Gunn)是最适合做毫米波射频源的。准光学功率合成是美国提出的一种具有很好的应用前景的功率合成技术,利用它能制造出更为紧凑的毫米波导引头。准光学合成利用天线和透镜在空间将微波及毫米波固态器件的功率组合在一起来实现。将光学导电效应用来控制毫米波固态器件时。其宽带宽、损耗低、在控制和被控制元件之间几乎完全隔离、抗电磁干扰性好、质量小、紧凑、响应迅速且可单片集成。近年来,毫米波接收机技术已取得相当的进展,非冷却式毫米波外差接收机的性能水平已达到可与微波频段的水平相比较的程度。实践证明,在这些接收机中采用梁式引线的砷化镓半导体器件,对于频率在30~100GHz范围内的接收机设计也是很合适的。随着毫米波集成电路技术的发展,通常把振荡、放大、混频和其他控制器件集成为一个子系统,这样接收机/发射机集成在一起,能大幅度降低尺寸和质量,同时也降低了成本。目前,频率高达94GHz的集成振荡器、放大器、混频器、衰减器和相移器已批量生产。特别是在利用光学外差作用产生精确的毫米波信号,准光学极化处理、滤波、功率合成、收发双工、控制放大器增益。毫米波检波和下变频,光电转换等方面具有独特的优点。可以大大提高毫米波导引头的性能。
信号处理器是导引头的核心部件。它要完成许多重要的工作,例如控制发射机的工作射频和脉冲重复频率,多普勒频率跟踪,目标识别和抗干扰,末制导指令计算,导弹自检和导引头工作逻辑控制等。厘米波雷达中已广泛采用的信号处理技术,诸如脉冲压缩、视频积累、极化分集、动目标显示(MTI)、扩频、频率捷变、极化捷变和合成孔径以及线性预测法、Capon型法、信号子空间法、参量目标模型滤波法等这些超分辨技术都已经在毫米波雷达中得到应用。随着计算机技术、光学技术以及毫米波技术的不断发展,采用光学互连的极高速信号处理器正受到技术先进国家的重视。美国国防高级研究项目局于2002年启动了一项模拟光学信号处理技术研究计划,旨在研究工作频段在20MHz~100GHz频段范围内的光学信号处理技术。
毫米波制导技术的发展趋势之一是发展毫米波成像制导技术,由非相参发展到了一维高分辨成像,目前正向宽带二维乃至三维成像方向发展。另一个趋势是向毫米波/红外、毫米波主/被动复合制导等多模复合制导发展。此外,毫米波与光学技术相结合是值得注意的发展动向。
热心网友
时间:2022-06-26 02:51
导弹追击问题其实就是一个做简单运动(如直线运动)的物体被另一个一直把运动方向对准他的物体追的情况.那在实际的生活中有很多例子的,如:海上缉私船的追捕情况、海里和陆地上很多动物的捕食情况、拦截导弹拦截弹道导弹的情况,例子真的是很不太好找,我可以给你提供个思路:能随着另一个物体自动转弯的物体绝对是有智力的东东,不然就是跟他所追的那个物体之间有必然联系如两个距离控制得很好的磁铁,所以你沿着这个思路找找吧,我的脑袋也不够用了呵呵,只能帮到这里了!
热心网友
时间:2022-06-26 02:51
给飞机,船只导航
热心网友
时间:2022-06-26 02:52
这种问题,回答的人可以说没有```````````` 你到不如花些时间到专门的网站查查去```````
热心网友
时间:2022-06-26 02:53
www.pconline.com.cn/pce/sj/media/3dsmax/0505/612647.html
动画模型....