发布网友 发布时间:2022-05-02 01:00
共4个回答
热心网友 时间:2023-10-08 22:35
相同。
因为A与A^T的特征多项式相同,所以它们的特征值相同.
|A^T-λE|
= |(A-λE)^T|
= |A-λE|
扩展资料
求矩阵的全部特征值和特征向量的方法如下:
第一步:计算的特征多项式;
第二步:求出特征方程的全部根,即为的全部特征值;
第三步:对于的每一个特征值,求出齐次线性方程组的一个基础解系,则的属于特征值的全部特征向量是其中是不全为零的任意实数。
若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定。反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值。
热心网友 时间:2023-10-08 22:36
相同。
因为A与A^T的特征多项式相同,所以它们的特征值相同.
|A^T-λE|
= |(A-λE)^T|
= |A-λE|
扩展资料
性质1:若λ是可逆阵A的一个特征根,x为对应的特征向量,则1/λ 是A的逆的一个特征根,x仍为对应的特征向量。
性质2:若 λ是方阵A的一个特征根,x为对应的特征向量,则λ 的m次方是A的m次方的一个特征根,x仍为对应的特征向量。
性质3:设λ1,λ2,…,λm是方阵A的互不相同的特征值。xj是属于λi的特征向量( i=1,2,…,m),则x1,x2,…,xm线性无关,即不相同特征值的特征向量线性无关。
热心网友 时间:2023-10-08 22:36
相同!热心网友 时间:2023-10-08 22:37
是的 在复数域存在可逆矩阵P 使得 P^(-1)AP=上三角矩阵 对角线元素为A的特征值 两端取转置