发布网友 发布时间:2022-05-01 22:13
共3个回答
热心网友 时间:2022-06-24 05:16
到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。
圆锥曲线:包括椭圆(圆为椭圆的特例)、抛物线、双曲线。 圆锥曲线(二次曲线)的(不完整)统一定义:到定点( 焦点)的距离与到定直线(准线)的距离的商是常数e(离心率)的点的轨迹。
椭圆:平面内一个动点到一个 定点与一条定 直线的距离之比是一个小于1的正常数e。平面内一个动点到两个定点(焦点)的距离和等于定长2a的点的 集合(设动点为P,两个定点为F1和F2,则PF1+PF2=2a)。定点是椭圆的焦点,定直线是椭圆的准线,常数e是椭圆的离心率。
扩展资料
1、联立方程法。
用点斜式设出该弦的方程(斜率不存在的情况需要另外考虑),与圆锥曲线方程联立求得关于x的一元二次方程和关于y的一元二次方程,由韦达定理得到两根之和的表达式,再由中点坐标公式和两根之和的具体数值,求出该弦的方程。
2、点差法(代点相减法)
设出弦的两端点坐标(x₁,y₁)和(x₂,y₂),代入圆锥曲线的方程,将得到的两个方程相减,运用平方差公式得[(x₁+x₂)(x₁-x₂)]/a²+[(y₁+y₂)(y₁-y₂)/b²]=0
由斜率为(y₁-y₂)/(x₁-x₂),可以得到斜率的取值(使用时注意判别式的问题)
热心网友 时间:2022-06-24 05:16
圆锥曲线的第二定义是:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。
圆锥曲线:包括椭圆(圆为椭圆的特例)、抛物线、双曲线。 圆锥曲线(二次曲线)的(不完整)统一定义:到定点( 焦点)的距离与到定直线(准线)的距离的商是常数e(离心率)的点的轨迹。
椭圆:平面内一个动点到一个 定点与一条定 直线的距离之比是一个小于1的正常数e。平面内一个动点到两个定点(焦点)的距离和等于定长2a的点的 集合(设动点为P,两个定点为F1和F2,则PF1+PF2=2a)。定点是椭圆的焦点,定直线是椭圆的准线,常数e是椭圆的离心率。
双曲线(的一支):平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数e;平面内一个动点到两个定点(焦点)的距离差等于定长2a的点的集合(设动点为P,两个定点为F1和F2,则│PF1-PF2│=2a)定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的离心率。
抛物线:平面内一个动点到一个定点与一条定直线的距离之比是等于1。定点是抛物线的焦点,定直线是抛物线的准线。
热心网友 时间:2022-06-24 05:17
平面上到定点的距离与到定直线的距离的比e为常数的点的集合是圆锥曲线,当e分别在0与1之间、等于1、大于1时是椭圆、抛物线、双曲线。