问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

关于圆周率的历史资料

发布网友 发布时间:2022-04-30 05:08

我来回答

14个回答

热心网友 时间:2022-05-20 12:54

古希腊作为古代几何王国对圆周率的贡献尤为突出。古希腊大数学家阿基米德(公元前287–212 年) 开创了人类历史上通过理论计算圆周率近似值的先河。阿基米德从单位圆出发,先用内接正六边形求出圆周率的下界为3,再用外接正六边形并借助勾股定理求出圆周率的上界小于4。

接着,他对内接正六边形和外接正六边形的边数分别加倍,将它们分别变成内接正12边形和外接正12边形,再借助勾股定理改进圆周率的下界和上界。他逐步对内接正多边形和外接正多边形的边数加倍,直到内接正96边形和外接正96边形为止。

最后,他求出圆周率的下界和上界分别为223/71 和22/7, 并取它们的平均值3.141851 为圆周率的近似值。阿基米德用到了迭代算法和两侧数值*近的概念,称得上是“计算数学”的鼻祖。

南北朝时代著名数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7。他的辉煌成就比欧洲至少早了1000年。

其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲不知道是祖冲之先知道密率的,将密率错误的称之为安托尼斯率。

阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。

德国数学家柯伦于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。

斐波那契算出圆周率约为3.1418。   

韦达用阿基米德的方法,算出3.1415926535<π<3.1415926537   

他还是第一个以无限乘积叙述圆周率的人。   

鲁道夫万科伦以边数多过32000000000的多边形算出有35个小数位的圆周率。   

华理斯在1655年求出一道公式π/2=2×2×4×4×6×6×8×8...../3×3×5×5×7×7×9×9......   

欧拉发现的e的iπ次方加1等于0,成为证明π是超越数的重要依据。   

扩展资料:

魏晋时,刘徽曾用使正多边形的边数逐渐增加去*近圆周的方法(即“割圆术”),求得π的近似值3.1416。

汉朝时,张衡得出π的平方除以16等于5/8,即π等于10的开方(约为3.162)。虽然这个值不太准确,但它简单易理解,所以也在亚洲风行了一阵。 王蕃(229-267)发现了另一个圆周率值,这就是3.156,但没有人知道他是如何求出来的。   

公元5世纪,祖冲之和他的儿子以正24576边形,求出圆周率约为355/113,和真正的值相比,误差小于八亿分之一。这个纪录在一千年后才给打破。   

印度,约在公元530年,数学大师阿耶波多利用384边形的周长,算出圆周率约为√9.8684。   婆罗门笈多采用另一套方法,推论出圆周率等于10的算术平方根。

圆周率(Pai)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。 在分析学里,π可以严格地定义为满足sin x = 0的最小正实数x。

圆周率用字母 π(读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。

在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。

参考资料来源:百度百科-圆周率

热心网友 时间:2022-05-20 14:12

关于π最早的文字记载来自公元前2000年前后的古巴比伦人,它们认为π=3.125,而古埃及人使用π=3.1605。早期的π值大体都是通过测量圆周长,再测量圆的直径,相除得到的估计值。

到了公元前3世纪,古希腊大数学家阿基米德第一个给出了计算圆周率π的科学方法:圆内接(或外切)正多边形的周长是可以精确计算的,而随着正多边形边数的增加,会越来越接近圆,那么多边形的周长也会越来越接近圆周长。

中国三国时期的数学家刘徽,在对《九章算术》作注时,在公元264年给出了类似的算法,并称其为割圆术。所不同的是,刘徽是通过用圆内接正多边形的面积来逐步*近圆面积来计算圆周率的。

约公元480年,南北朝时期的大科学家祖冲之就用割圆术算出了3.141 592 6<π<3.141 592 7,这个π值已经准确到7位小数,创造了圆周率计算的世界纪录。

17世纪之前,计算圆周率基本上都是用上述几何方法(割圆术),德国的鲁道夫·范·科伊伦花费大半生时间,计算了正262边形的周长,于1610年将π值计算到小数点后35位。德国人因此将圆周率称为“鲁道夫数”。

关于π值的研究,*性的变革出现在17世纪发明微积分时,微积分和幂级数展开的结合导致了用无穷级数来计算π值的分析方法,这就抛开了计算繁杂的割圆术。那些微积分的先驱如帕斯卡、牛顿、莱布尼茨等都对π值的计算做出了贡献。

1706年,英国数学家梅钦得出了现今以其名字命名的公式,给出了π值的第一个快速算法。梅钦因此把π值计算到了小数点后100位。

1874年,英国的谢克斯花15年时间将π计算到了小数点后707位,这是人工计算π值的最高纪录,被记录在巴黎发现宫的π大厅。

电子计算机出现后,人们开始利用它来计算圆周率π的数值,从此,π的数值长度以惊人的速度扩展着:1949年算至小数点后2037位,1973年算至100万位,1983年算至1000万位,1987年算至1亿位,2002年算至1万亿位,至2011年,已算至小数点后10万亿位。

扩展资料

“*”圆周率π

英国利兹大学数学院教授凯文·休斯敦举例说,如果用π计算圆形周长,那么半圆形周长为半径乘以一个π,四分之一圆形周长为半径乘以二分之一π,“计算四分之三圆形周长要稍微想一下,而不能自然得出结果”。

“如果我们用τ代替π该多么简单!”休斯敦说,“一个圆形周长就是半径乘以一个τ,半圆就是半径乘以半个τ,四分之一圆就是半径乘以四分之一τ,以此类推,不用想。”(τ是周长与半径之比,是π的两倍。)

参考资料:新华网《圆周率是怎样算出来的?》

人民网《圆周率等于6.28?》

热心网友 时间:2022-05-20 15:47

说圆周率是3.14其实并不十分准确.事实上,圆周率等于3.1415926535897932……是个无穷尽的非循环小数.计算圆周率的历史,可以追溯到很久很久以前。

距今约四千年前的古巴比伦人计算出圆周率为3.125;古埃及人认为圆周率是3.16049;而在《圣经》里,则有圆周率等于3的记载.

第一个用数学的方法将圆周率计算到小数点后两位(求得3.14)的人,是两千三百年前出生在叙拉古的数学家阿基米德.他先在直径为1的圆的内部和圆的外部,都画了相同大小的正96边形.这样一来,画在圆外图形的周长为3.142871……而画在圆形里面的图形周长为3.140845……所以,处于二者之间的圆的周长,也就是3.14……啦!因为是直径为1的圆,根据圆周率等于圆的周长除以圆的直径,所以圆周率就是3.14了.

扩展资料:

圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。 在分析学里,π可以严格地定义为满足sin x = 0的最小正实数x。

参考资料:

百度百科--圆周率

热心网友 时间:2022-05-20 17:38

  π 的 历 史

  圆的周长与直径之比是一个常数,人们称之为圆周率。通常用希腊字母π 来表示。1706年,英国人琼斯首次创用π 代表圆周率。他的符号并未立刻被采用,以后,欧拉予以提倡,才渐渐推广开来。现在π 已成为圆周率的专用符号, π的研究,在一定程度上反映这个地区或时代的数学水平,它的历史是饶有趣味的。

  在古代,实际上长期使用 π=3这个数值,巴比伦、印度、中国都是如此。到公元前2世纪,中国的《周髀算经》里已有周三径一的记载。东汉的数学家又将 π值改为 (约为3.16)。直正使圆周率计算建立在科学的基础上,首先应归功于阿基米德。他专门写了一篇论文《圆的度量》,用几何方法证明了圆周率与圆直径之比小于22/7而大于223/71 。这是第一次在科学中创用上、下界来确定近似值。第一次用正确方法计算π 值的,是魏晋时期的刘徽,在公元263年,他首创了用圆的内接正多边形的面积来*近圆面积的方法,算得π 值为3.14。我国称这种方法为割圆术。直到1200年后,西方人才找到了类似的方法。后人为纪念刘徽的贡献,将3.14称为徽率。

  公元460年,南朝的祖冲之利用刘徽的割圆术,把π 值算到小点后第七位3.1415926,这个具有七位小数的圆周率在当时是世界首次。祖冲之还找到了两个分数:22/7 和355/113 ,用分数来代替π ,极大地简化了计算,这种思想比西方也早一千多年。

  祖冲之的圆周率,保持了一千多年的世界记录。终于在1596年,由荷兰数学家卢道夫打破了。他把π 值推到小数点后第15位小数,最后推到第35位。为了纪念他这项成就,人们在他1610年去世后的墓碑上,刻上:3.14159265358979323846264338327950288这个数,从此也把它称为卢道夫数。
  之后,西方数学家计算 π的工作,有了飞速的进展。1948年1月,费格森与雷思奇合作,算出808位小数的π 值。电子计算机问世后, π的人工计算宣告结束。20世纪50年代,人们借助计算机算得了10万位小数的 π,70年代又突破这个记录,算到了150万位。到90年代初,用新的计算方法,算到的π 值已到4.8亿位。π 的计算经历了几千年的历史,它的每一次重大进步,都标志着技术和算法的革新。
  没有比我全的了

热心网友 时间:2022-05-20 19:46

圆周率是一个极其驰名的数。从有文字记载的历史开始,这个数就引进了外行人和学者们的兴趣。作为一个非常重要的常数,圆周率最早是出于解决有关圆的计算问题。仅凭这一点,求出它的尽量准确的近似值,就是一个极其迫切的问题了。事实也是如此,几千年来作为数学家们的奋斗目标,古今中外一代一代的数学家为此献出了自己的智慧和劳动。回顾历史,人类对 π 的认识过程,反映了数学和计算技术发展情形的一个侧面。 π 的研究,在一定程度上反映这个地区或时代的数学水平。德国数学史家康托说:“历史上一个国家所算得的圆周率的准确程度,可以作为衡量这个国家当时数学发展水平的指标。”直到19世纪初,求圆周率的值应该说是数学中的头号难题。为求得圆周率的值,人类走过了漫长而曲折的道路,它的历史是饶有趣味的。我们可以将这一计算历程分为几个阶段。

实验时期

通过实验对 π 值进行估算,这是计算 π 的的第一阶段。这种对 π 值的估算基本上都是以观察或实验为根据,是基于对一个圆的周长和直径的实际测量而得出的。在古代世界,实际上长期使用 π =3这个数值。最早见于文字记载的有*教《圣经》中的章节,其上取圆周率为3。这一段描述的事大约发生在公元前950年前后。其他如巴比伦、印度、中国等也长期使用3这个粗略而简单实用的数值。在我国刘徽之前“圆径一而周三”曾广泛流传。我国第一部《周髀算经》中,就记载有圆“周三径一”这一结论。在我国,木工师傅有两句从古流传下来的口诀:叫做:“周三径一,方五斜七”,意思是说,直径为1的圆,周长大约是3,边长为5的正方形,对角线之长约为7。这正反映了早期人们对圆周率 π 和√2 这两个无理数的粗略估计。东汉时期官方还明文规定圆周率取3为计算面积的标准。后人称之为“古率”。

早期的人们还使用了其它的粗糙方法。如古埃及、古希腊人曾用谷粒摆在圆形上,以数粒数与方形对比的方法取得数值。或用匀重木板锯成圆形和方形以秤量对比取值……由此,得到圆周率的稍好些的值。如古埃及人应用了约四千年的 4 (8/9)2 = 3.1605。在印度,公元前六世纪,曾取 π= √10 = 3.162。在我国东、西汉之交,新朝王莽令刘歆制造量的容器――律嘉量斛。刘歆在制造标准容器的过程中就需要用到圆周率的值。为此,他大约也是通过做实验,得到一些关于圆周率的并不划一的近似值。现在根据铭文推算,其计算值分别取为3.1547,3.1992,3.1498,3.2031比径一周三的古率已有所进步。人类的这种探索的结果,当主要估计圆田面积时,对生产没有太大影响,但以此来制造器皿或其它计算就不合适了。
几何法时期

凭直观推测或实物度量,来计算 π 值的实验方法所得到的结果是相当粗略的。

真正使圆周率计算建立在科学的基础上,首先应归功于阿基米德。他是科学地研究这一常数的第一个人,是他首先提出了一种能够借助数学过程而不是通过测量的、能够把 π 的值精确到任意精度的方法。由此,开创了圆周率计算的第二阶段。

圆周长大于内接正四边形而小于外切正四边形,因此 2√2 < π < 4 。
当然,这是一个差劲透顶的例子。据说阿基米德用到了正96边形才算出他的值域。
阿基米德求圆周率的更精确近似值的方法,体现在他的一篇论文《圆的测定》之中。在这一书中,阿基米德第一次创用上、下界来确定 π 的近似值,他用几何方法证明了“圆周长与圆直径之比小于 3+(1/7) 而大于 3 + (10/71) ”,他还提供了误差的估计。重要的是,这种方法从理论上而言,能够求得圆周率的更准确的值。到公元150年左右,希腊天文学家托勒密得出 π =3.1416,取得了自阿基米德以来的巨大进步。

在我国,首先是由数学家刘徽得出较精确的圆周率。公元263年前后,刘徽提出著名的割圆术,得出 π =3.14,通常称为“徽率”,他指出这是不足近似值。虽然他提出割圆术的时间比阿基米德晚一些,但其方法确有着较阿基米德方法更美妙之处。割圆术仅用内接正多边形就确定出了圆周率的上、下界,比阿基米德用内接同时又用外切正多边形简捷得多。另外,有人认为在割圆术中刘徽提供了一种绝妙的精加工办法,以致于他将割到192边形的几个粗糙的近似值通过简单的加权平均,竟然获得具有4位有效数字的圆周率 π =3927/1250 =3.1416。而这一结果,正如刘徽本人指出的,如果通过割圆计算得出这个结果,需要割到3072边形。这种精加工方法的效果是奇妙的。这一神奇的精加工技术是割圆术中最为精彩的部分,令人遗憾的是,由于人们对它缺乏理解而被长期埋没了。

恐怕大家更加熟悉的是祖冲之所做出的贡献吧。对此,《隋书·律历志》有如下记载:“宋末,南徐州从事祖冲之更开密法。以圆径一亿为丈,圆周盈数三丈一尺四寸一分五厘九毫二秒七忽,朒数三丈一尺四寸一分五厘九毫二秒六忽,正数在盈朒二限之间。密率:圆径一百一十三,圆周三百五十五。约率,圆径七,周二十二。”

这一记录指出,祖冲之关于圆周率的两大贡献。其一是求得圆周率

3.1415926 < π < 3.1415927

其二是,得到 π 的两个近似分数即:约率为22/7;密率为355/113。

他算出的 π 的8位可靠数字,不但在当时是最精密的圆周率,而且保持世界记录九百多年。以致于有数学史家提议将这一结果命名为“祖率”。

这一结果是如何获得的呢?追根溯源,正是基于对刘徽割圆术的继承与发展,祖冲之才能得到这一非凡的成果。因而当我们称颂祖冲之的功绩时,不要忘记他的成就的取得是因为他站在数学伟人刘徽的肩膀上的缘故。后人曾推算若要单纯地通过计算圆内接多边形边长的话,得到这一结果,需要算到圆内接正12288边形,才能得到这样精确度的值。祖冲之是否还使用了其它的巧妙办法来简化计算呢?这已经不得而知,因为记载其研究成果的著作《缀术》早已失传了。这在中国数学发展史上是一件极令人痛惜的事。

祖冲之的这一研究成果享有世界声誉:巴黎“发现宫”科学博物馆的墙壁上著文介绍了祖冲之求得的圆周率,莫斯科大学礼堂的走廊上镶嵌有祖冲之的大理石塑像,月球上有以祖冲之命名的环形山……

对于祖冲之的关于圆周率的第二点贡献,即他选用两个简单的分数尤其是用密率来近似地表示 π 这一点,通常人们不会太注意。然而,实际上,后者在数学上有更重要的意义。

密率与 π 的近似程度很好,但形式上却很简单,并且很优美,只用到了数字1、3、5。数学史家梁宗巨教授验证出:分母小于16604的一切分数中,没有比密率更接近 π 的分数。在国外,祖冲之死后一千多年,西方人才获得这一结果。

可见,密率的提出是一件很不简单的事情。人们自然要追究他是采用什么办法得到这一结果的呢?他是用什么办法把圆周率从小数表示的近似值化为近似分数的呢?这一问题历来为数学史家所关注。由于文献的失传,祖冲之的求法已不为人知。后人对此进行了各种猜测。

让我们先看看国外历史上的工作,希望能够提供出一些信息。

1573年,德国人奥托得出这一结果。他是用阿基米德成果22/7与托勒密的结果377/120用类似于加成法“合成”的:(377-22) / (120-7) = 355/113。

1585年,荷兰人安托尼兹用阿基米德的方法先求得:333/106 < π < 377/120,用两者作为 π 的母近似值,分子、分母各取平均,通过加成法获得结果:3 ((15+17)/(106+120) = 355/113。

两个虽都得出了祖冲之密率,但使用方法都为偶合,无理由可言。

在日本,十七世纪关孝和重要著作《括要算法》卷四中求圆周率时创立零约术,其实质就是用加成法来求近似分数的方法。他以3、4作为母近似值,连续加成六次得到祖冲之约率,加成一百十二次得到密率。其学生对这种按部就班的笨办法作了改进,提出从相邻的不足、过剩近似值就近加成的办法,(实际上就是我们前面已经提到的加成法)这样从3、4出发,六次加成到约率,第七次出现25/8,就近与其紧邻的22/7加成,得47/15,依次类推,只要加成23次就得到密率。

钱宗琮先生在《中国算学史》(1931年)中提出祖冲之采用了我们前面提到的由何承天首创的“调日法”或称加权加成法。他设想了祖冲之求密率的过程:以徽率157/50,约率22/7为母近似值,并计算加成权数x=9,于是 (157 + 22×,9) / (50+7×9) = 355/113,一举得到密率。钱先生说:“冲之在承天后,用其术以造密率,亦意中事耳。”

另一种推测是:使用连分数法。

由于求二自然数的最大公约数的更相减损术远在《九章算术》成书时代已流行,所以借助这一工具求近似分数应该是比较自然的。于是有人提出祖冲之可能是在求得盈 二数之后,再使用这个工具,将3.14159265表示成连分数,得到其渐近分数:3,22/7,333/106,355/113,102573/32650…

最后,取精确度很高但分子分母都较小的355/113作为圆周率的近似值。至于上面圆周率渐近分数的具体求法,这里略掉了。你不妨利用我们前面介绍的方法自己求求看。英国李约瑟博士持这一观点。他在《中国科学技术史》卷三第19章几何编中论祖冲之的密率说:“密率的分数是一个连分数渐近数,因此是一个非凡的成就。”

我国再回过头来看一下国外所取得的成果。

1150年,印度数学家婆什迦罗第二计算出 π= 3927/1250 = 3.1416。1424年,中亚细亚地区的天文学家、数学家卡西著《圆周论》,计算了3×228=805,306,368边内接与外切正多边形的周长,求出 π 值,他的结果是:

π=3.14159265358979325

有十七位准确数字。这是国外第一次打破祖冲之的记录。

16世纪的法国数学家韦达利用阿基米德的方法计算 π 近似值,用 6×216正边形,推算出精确到9位小数的 π 值。他所采用的仍然是阿基米德的方法,但韦达却拥有比阿基米德更先进的工具:十进位置制。17世纪初,德国人鲁道夫用了几乎一生的时间钻研这个问题。他也将新的十进制与早的阿基米德方法结合起来,但他不是从正六边形开始并将其边数翻番的,他是从正方形开始的,一直推导出了有262条边的正多边形,约4,610,000,000,000,000,000边形!这样,算出小数35位。为了记念他的这一非凡成果,在德国圆周率 π 被称为“鲁道夫数”。但是,用几何方法求其值,计算量很大,这样算下去,穷数学家一生也改进不了多少。到鲁道夫可以说已经登峰造极,古典方法已引导数学家们走得很远,再向前推进,必须在方法上有所突破。

17世纪出现了数学分析,这锐利的工具使得许多初等数学束手无策的问题迎刃而解。 π 的计算历史也随之进入了一个新的阶段。

分析法时期

这一时期人们开始摆脱求多边形周长的繁难计算,利用无穷级数或无穷连乘积来算 π 。

1593年,韦达给出

这一不寻常的公式是 π 的最早分析表达式。甚至在今天,这个公式的优美也会令我们赞叹不已。它表明仅仅借助数字2,通过一系列的加、乘、除和开平方就可算出 π 值。

接着有多种表达式出现。如沃利斯1650年给出:

1706年,梅钦建立了一个重要的公式,现以他的名字命名:

再利用分析中的级数展开,他算到小数后100位。

这样的方法远比可怜的鲁道夫用大半生时间才抠出的35位小数的方法简便得多。显然,级数方法宣告了古典方法的过时。此后,对于圆周率的计算像马拉松式竞赛,纪录一个接着一个:

1844年,达塞利用公式:

算到200位。

19世纪以后,类似的公式不断涌现, π 的位数也迅速增长。1873年,谢克斯利用梅钦的一系列方法,级数公式将 π 算到小数后707位。为了得到这项空前的纪录,他花费了二十年的时间。他死后,人们将这凝聚着他毕生心血的数值,铭刻在他的墓碑上,以颂扬他顽强的意志和坚韧不拔的毅力。于是在他的墓碑上留下了他一生心血的结晶: π 的小数点后707位数值。这一惊人的结果成为此后74年的标准。此后半个世纪,人们对他的计算结果深信不疑,或者说即便怀疑也没有办法来检查它是否正确。以致于在1937年巴黎博览会发现馆的天井里,依然显赫地刻着他求出的 π 值。

又过了若干年,数学家弗格森对他的计算结果产生了怀疑,其疑问基于如下猜想:在 π 的数值中,尽管各数字排列没有规律可循,但是各数码出现的机会应该相同。当他对谢克斯的结果进行统计时,发现各数字出现次数过于参差不齐。于是怀疑有误。他使用了当时所能找到的最先进的计算工具,从1944年5月到1945年5月,算了整整一年。1946年,弗格森发现第528位是错的(应为4,误为5)。谢克斯的值中足足有一百多位全都报了销,这把可怜的谢克斯和他的十五年浪费了的光阴全部一笔勾销了。

对此,有人曾嘲笑他说:数学史在记录了诸如阿基米德、费马等人的著作之余,也将会挤出那么一、二行的篇幅来记述1873年前谢克斯曾把 π 计算到小数707位这件事。这样,他也许会觉得自己的生命没有虚度。如果确实是这样的话,他的目的达到了。

人们对这些在地球的各个角落里作出不懈努力的人感到不可理解,这可能是正常的。但是,对此做出的嘲笑却是过于残忍了。人的能力是不同的,我们无法要求每个人都成为费马、高斯那样的人物。但成为不了伟大的数学家,并不意味着我们就不能为这个社会做出自己有限的贡献。人各有其长,作为一个精力充沛的计算者,谢克斯愿意献出一生的大部分时光从事这项工作而别无报酬,并最终为世上的知识宝库添了一小块砖加了一个块瓦。对此我们不应为他的不懈努力而感染并从中得到一些启发与教育吗?

1948年1月弗格森和伦奇两人共同发表有808位正确小数的 π 。这是人工计算 π 的最高记录。

计算机时期

1946年,世界第一台计算机ENIAC制造成功,标志着人类历史迈入了电脑时代。电脑的出现导致了计算方面的根本*。1949年,ENIAC根据梅钦公式计算到2035(一说是2037)位小数,包括准备和整理时间在内仅用了70小时。计算机的发展一日千里,其记录也就被频频打破。

1973年,有人就把圆周率算到了小数点后100万位,并将结果印成一本二百页厚的书,可谓世界上最枯燥无味的书了。1989年突破10亿大关,1995年10月超过64亿位。1999年9月30日,《文摘报》报道,日本东京大学教授金田康正已求到2061.5843亿位的小数值。如果将这些数字打印在A4大小的复印纸上,令每页印2万位数字,那么,这些纸摞起来将高达五六百米。来自最新的报道:金田康正利用一台超级计算机,计算出圆周率小数点后一兆二千四百一十一亿位数,改写了他本人两年前创造的纪录。据悉,金田教授与日立制作所的员工合作,利用目前计算能力居世界第二十六位的超级计算机,使用新的计算方法,耗时四百多个小时,才计算出新的数位,比他一九九九年九月计算出的小数点后二千六百一十一位提高了六倍。圆周率小数点后第一兆位数是二,第一兆二千四百一十一亿位数为五。如果一秒钟读一位数,大约四万年后才能读完。

不过,现在打破记录,不管推进到多少位,也不会令人感到特别的惊奇了。实际上,把 π 的数值算得过分精确,应用意义并不大。现代科技领域使用的 π 值,有十几位已经足够。如果用鲁道夫的35位小数的 π 值计算一个能把太阳系包围起来的圆的周长,误差还不到质子直径的百万分之一。我们还可以引美国天文学家西蒙·纽克姆的话来说明这种计算的实用价值:

“十位小数就足以使地球周界准确到一英寸以内,三十位小数便能使整个可见宇宙的四周准确到连最强大的显微镜都不能分辨的一个量。”

那么为什么数学家们还象登山运动员那样,奋力向上攀登,一直求下去而不是停止对 π 的探索呢?为什么其小数值有如此的魅力呢?

这其中大概免不了有人类的好奇心与领先于人的心态作怪,但除此之外,还有许多其它原因。

1、它现在可以被人们用来测试或检验超级计算机的各项性能,特别是运算速度与计算过程的稳定性。这对计算机本身的改进至关重要。就在几年前,当Intel公司推出奔腾(Pentium)时,发现它有一点小问题,这问题正是通过运行 π 的计算而找到的。这正是超高精度的 π 计算直到今天仍然有重要意义的原因之一。

2、 计算的方法和思路可以引发新的概念和思想。虽然计算机的计算速度超出任何人的想象,但毕竟还需要由数学家去编制程序,指导计算机正确运算。实际上,确切地说,当我们把 π 的计算历史划分出一个电子计算机时期时,这并非意味着计算方法上的改进,而只是计算工具有了一个大飞跃而已。因而如何改进计算技术,研究出更好的计算公式,使公式收敛得更快、能极快地达到较大的精确度仍是数学家们面对的一个重要课题。在这方面,本世纪印度天才数学家拉马努扬得出了一些很好的结果。他发现了许多能够迅速而精确地计算 π 近似值的公式。他的见解开通了更有效地计算 π 近似值的思路。现在计算机计算 π 值的公式就是由他得到的。至于这位极富传奇色彩的数学家的故事,在这本小书中我们不想多做介绍了。不过,我希望大家能够明白 π 的故事讲述的是人类的胜利,而不是机器的胜利。

3、还有一个关于 π 的计算的问题是:我们能否无限地继续算下去?答案是:不行!根据朱达偌夫斯基的估计,我们最多算1077位。虽然,现在我们离这一极限还相差很远很远,但这毕竟是一个界限。为了不受这一界限的约束,就需要从计算理论上有新的突破。前面我们所提到的计算,不管用什么公式都必须从头算起,一旦前面的某一位出错,后面的数值完全没有意义。还记得令人遗憾的谢克斯吗?他就是历史上最惨痛的教训。

4、于是,有人想能否计算时不从头开始,而是从半截开始呢?这一根本性的想法就是寻找并行算法公式。1996年,圆周率的并行算法公式终于找到,但这是一个16进位的公式,这样很容易得出的1000亿位的数值,只不过是16进位的。是否有10进位的并行计算公式,仍是未来数学的一大难题。

5、作为一个无穷数列,数学家感兴趣的把 π 展开到上亿位,能够提供充足的数据来验证人们所提出的某些理论问题,可以发现许多迷人的性质。如,在 π 的十进展开中,10个数字,哪些比较稀,哪些比较密? π 的数字展开中某些数字出现的频率会比另一些高吗?或许它们并非完全随意?这样的想法并非是无聊之举。只有那些思想敏锐的人才会问这种貌似简单,许多人司空见惯但却不屑发问的问题。

6、数学家弗格森最早有过这种猜想:在 π 的数值式中各数码出现的概率相同。正是他的这个猜想为发现和纠正向克斯计算 π 值的错误立下了汗马功劳。然而,猜想并不等于现实。弗格森想验证它,却*为力。后人也想验证它,也是苦于已知的 π 值的位数太少。甚至当位数太少时,人们有理由对猜想的正确性做出怀疑。如,数字0的出现机会在开始时就非常少。前50位中只有1个0,第一次出现在32位上。可是,这种现象随着数据的增多,很快就改变了:100位以内有8个0;200位以内有19个0;……1000万位以内有999,440个0;……60亿位以内有599,963,005个0,几乎占1/10。

其他数字又如何呢?结果显示,每一个都差不多是1/10,有的多一点,有的少一点。虽然有些偏差,但都在1/10000之内。

7、人们还想知道: π 的数字展开真的没有一定的模式吗?我们希望能够在十进制展开式中通过研究数字的统计分布,寻找任何可能的模型――如果存在这种模型的话,迄今为止尚未发现有这种模型。同时我们还想了解: π 的展开式中含有无穷的样式变化吗?或者说,是否任何形式的数字排列都会出现呢?著名数学家希尔伯特在没有发表的笔记本中曾提出下面的问题: π 的十进展开中是否有10个9连在一起?以现在算到的60亿位数字来看,已经出现:连续6个9连在一起。希尔伯特的问题答案似乎应该是肯定的,看来任何数字的排列都应该出现,只是什么时候出现而已。但这还需要更多 π 的数位的计算才能提供切实的证据。

8、在这方面,还有如下的统计结果:在60亿数字中已出现连在一起的8个8;9个7;10个6;小数点后第710150位与3204765位开始,均连续出现了七个3;小数点52638位起连续出现了14142135这八个数字,这恰是的前八位;小数点后第2747956位起,出现了有趣的数列876543210,遗憾的是前面缺个9;还有更有趣的数列123456789也出现了。

如果继续算下去,看来各种类型的数字列组合可能都会出现。

拾零: π 的其它计算方法

在1777年出版的《或然性算术实验》一书中,蒲丰提出了用实验方法计算 π 。这个实验方法的操作很简单:找一根粗细均匀,长度为 d 的细针,并在一张白纸上画上一组间距为 l 的平行线(方便起见,常取 l = d/2),然后一次又一次地将小针任意投掷在白纸上。这样反复地投多次,数数针与任意平行线相交的次数,于是就可以得到 π 的近似值。因为蒲丰本人证明了针与任意平行线相交的概率为 p = 2l/πd 。利用这一公式,可以用概率方法得到圆周率的近似值。在一次实验中,他选取 l = d/2 ,然后投针2212次,其中针与平行线相交704次,这样求得圆周率的近似值为 2212/704 = 3.142。当实验中投的次数相当多时,就可以得到 π 的更精确的值。

1850年,一位叫沃尔夫的人在投掷5000多次后,得到 π 的近似值为3.1596。目前宣称用这种方法得到最好结果的是意大利人拉兹瑞尼。在1901年,他重复这项实验,作了3408次投针,求得 π 的近似值为3.1415929,这个结果是如此准确,以致于很多人怀疑其实验的真伪。如美国犹他州奥格登的国立韦伯大学的L·巴杰就对此提出过有力的质疑。

不过,蒲丰实验的重要性并非是为了求得比其它方法更精确的 π 值。蒲丰投针问题的重要性在于它是第一个用几何形式表达概率问题的例子。计算 π 的这一方法,不但因其新颖,奇妙而让人叫绝,而且它开创了使用随机数处理确定性数学问题的先河,是用偶然性方法去解决确定性计算的前导。

在用概率方法计算 π 值中还要提到的是:R·查特在1904年发现,两个随意写出的数中,互素的概率为6/π2。1995年4月英国《自然》杂志刊登文章,介绍英国伯明翰市阿斯顿大学计算机科学与应用数学系的罗伯特·马修斯,如何利用夜空中亮星的分布来计算圆周率。马修斯从100颗最亮的星星中随意选取一对又一对进行分析,计算它们位置之间的角距。他检查了100万对因子,据此求得 π 的值约为3.12772。这个值与真值相对误差不超过5%。

通过几何、微积分、概率等广泛的范围和渠道发现 π ,这充分显示了数学方法的奇异美。 π 竟然与这么些表面看来风马牛不相及的试验,沟通在一起,这的确使人惊讶不已。

热心网友 时间:2022-05-20 22:11

圆的周长与直径之比是一个常数,人们称之为圆周率。通常用希腊字母π 来表示。1706年,英国人琼斯首次创用π 代表圆周率。他的符号并未立刻被采用,以后,欧拉予以提倡,才渐渐推广开来。现在π 已成为圆周率的专用符号, π的研究,在一定程度上反映这个地区或时代的数学水平,它的历史是饶有趣味的。

在古代,实际上长期使用 π=3这个数值,巴比伦、印度、中国都是如此。到公元前2世纪,中国的《周髀算经》里已有周三径一的记载。东汉的数学家又将 π值改为 (约为3.16)。直正使圆周率计算建立在科学的基础上,首先应归功于阿基米德。他专门写了一篇论文《圆的度量》,用几何方法证明了圆周率与圆直径之比小于22/7而大于223/71 。这是第一次在科学中创用上、下界来确定近似值。第一次用正确方法计算π 值的,是魏晋时期的刘徽,在公元263年,他首创了用圆的内接正多边形的面积来*近圆面积的方法,算得π 值为3.14。我国称这种方法为割圆术。直到1200年后,西方人才找到了类似的方法。后人为纪念刘徽的贡献,将3.14称为徽率。

公元460年,南朝的祖冲之利用刘徽的割圆术,把π 值算到小点后第七位3.1415926,这个具有七位小数的圆周率在当时是世界首次。祖冲之还找到了两个分数:22/7 和355/113 ,用分数来代替π ,极大地简化了计算,这种思想比西方也早一千多年。

祖冲之的圆周率,保持了一千多年的世界记录。终于在1596年,由荷兰数学家卢道夫打破了。他把π 值推到小数点后第15位小数,最后推到第35位。为了纪念他这项成就,人们在他1610年去世后的墓碑上,刻上:3.14159265358979323846264338327950288这个数,从此也把它称为卢道夫数。
之后,西方数学家计算 π的工作,有了飞速的进展。1948年1月,费格森与雷思奇合作,算出808位小数的π 值。电子计算机问世后, π的人工计算宣告结束。20世纪50年代,人们借助计算机算得了10万位小数的 π,70年代又突破这个记录,算到了150万位。到90年代初,用新的计算方法,算到的π 值已到4.8亿位。π 的计算经历了几千年的历史,它的每一次重大进步,都标志着技术和算法的革新。
圆周率—π
▲什麼是圆周率?
圆周率是一个常数,是代表圆周和直径的比例。它是一个无理数,即是一个无限不循环小数。但在日常生活中,通常都用3.14来代表圆周率去进行计算,即使是工程师或物理学家要进行较精密的计算,也只取值至小数点后约20位。
▲什麼是π?
π是第十六个希腊字母,本来它是和圆周率没有关系的,但大数学家欧拉在一七三六年开始,在书信和论文中都用π来代表圆周率。既然他是大数学家,所以人们也有样学样地用π来表圆周率了。但π除了表示圆周率外,也可以用来表示其他事物,在统计学中也能看到它的出现。
▲圆周率的发展史
在历史上,有不少数学家都对圆周率作出过研究,当中著名的有阿基米德(Archimedes of Syracuse)、托勒密(Claudius Ptolemy)、张衡、祖冲之等。他们在自己的国家用各自的方法,辛辛苦苦地去计算圆周率的值。下面,就是世上各个地方对圆周率的研究成果。
亚洲
中国:
魏晋时,刘徽曾用使正多边形的边数逐渐增加去*近圆周的方法(即「割圆术」),求得π的近似值3.1416。
汉朝时,张衡得出π的平方除以16等於5/8,即π等於10的开方(约为3.162)。虽然这个值不太准确,但它简单易理解,所以也在亚洲风行了一阵。
王蕃(229-267)发现了另一个圆周率值,这就是3.156,但没有人知道他是如何求出来的。
公元5世纪,祖冲之和他的儿子以正24576边形,求出圆周率约为355/113,和真正的值相比,误差小於八亿分之一。这个纪录在一千年后才给打破。
印度:
约在公元530年,数学大师阿耶波多利用384边形的周长,算出圆周率约为√9.8684。
婆罗门笈多采用另一套方法,推论出圆周率等於10的平方根。
欧洲
斐波那契算出圆周率约为3.1418。
韦达用阿基米德的方法,算出3.1415926535<π<3.1415926537
他还是第一个以无限乘积叙述圆周率的人。
鲁道夫万科伦以边数多过32000000000的多边形算出有35个小数位的圆周率。
华理斯在1655年求出一道公式π/2=2×2×4×4×6×6×8×8...../3×3×5×5×7×7×9×9......
欧拉发现的 e的iπ次方加1等於0,成为证明π是超越数的重要依据。
之后,不断有人给出反正切公式或无穷级数来计算π,在这里就不多说了。
π与电脑的关系
在1949年,美国制造的世上首部电脑—ENIAC(Electronic Numerical Interator and Computer)在亚伯丁试验场启用了。次年,里特韦斯纳、冯纽曼和梅卓普利斯利用这部电脑,计算出π的2037个小数位。这部电脑只用了70小时就完成了这项工作,扣除插入打孔卡所花的时间,等於平均两分钟算出一位数。五年后,NORC(海军兵器研究计算机)只用了13分钟,就算出π的3089个小数位。科技不断进步,电脑的运算速度也越来越快,在60年代至70年代,随著美、英、法的电脑科学家不断地进行电脑上的竞争,π的值也越来越精确。在1973年,Jean Guilloud和M. Bouyer发现了π的第一百万个小数位。
在1976年,新的突破出现了。萨拉明(Eugene Salamin)发表了一条新的公式,那是一条二次收歛算则,也就是说每经过一次计算,有效数字就会倍增。高斯以前也发现了一条类似的公式,但十分复杂,在那没有电脑的时代是不可行的。之后, 不断有人以高速电脑结合类似萨拉明的算则来计算π的值。目前为止,π的值己被算至小数点后51,000,000,000个位。
为什麼要继续计算π
其实,即使是要求最高、最准确的计算,也用不著这麼多的小数位,那麼,为什麼人们还要不断地努力去计算圆周率呢?
这是因为,用这个方法就可以测试出电脑的毛病。如果在计算中得出的数值出了错,这就表示硬体有毛病或软体出了错,这样便需要进行更改。同时,以电脑计算圆周率也能使人们产生良性的竞争,,科技也能得到进步,从而改善人类的生活。就连微积分、高等三角恒等式,也是有研究圆周率的推动,从而发展出来的。
▲π的年表
圆周率的发展
年代 求证者 内容
古代 中国周髀算经 周一径三
圆周率 = 3
西方圣经
元前三世 阿基米德(希腊) 1. 圆面积等於分别以半圆周和径为边长的矩形
的面积
2.圆面积与以直径为长的正方形面积之比为11:14
3. 圆的周长与直径之比小於3 1/7 ,大於
3 10/71
三世纪 刘徽
中国 用割圆术得圆周率=3.1416称为'徽率'
五世纪 祖冲之
中国 1. 3.1415926<圆周率<3.1415927
2. 约率 = 22/7
3. 密率 = 355/113
1596年 鲁道尔夫
荷兰 正确计萛得的35 位数字
1579年 韦达
法国 '韦达公式'以级数无限项乘积表示
1600年 威廉.奥托兰特
英国 用/σ表示圆周率
π是希腊文圆周的第一个字母
σ是希腊文直径的第一个字母
1655年 渥里斯
英国 开创利用无穷级数求的先例
1706年 马淇
英国 '马淇公式'计算出的100 位数字
1706年 琼斯
英国 首先用表示圆周率
1789年 乔治.威加
英国 准确计萛至126 位
1841年 鲁德福特
英国 准确计萛至152 位
1847年 克劳森
英国 准确计萛至248 位
1873年 威廉.谢克斯
英国 准确计萛至527 位
1948年 费格森和雷恩奇
英国 美国 准确计萛至808 位
1949年 赖脱威逊
美国 用计算机将计算到2034位
现代 用电子计算机可将计算到亿位

▲背诵π
历来都有不少人想挑战自己的记忆力,他们通常以圆周率为目标。目前的世界记录是由敬之后藤创下的,他在1995年花了9个多小时,背诵出圆周率的42,000个位数。
目前,最常用的记忆圆周率技巧就是字长法,以每个字的字数代表圆周率的一个位数。在这种方法中最简单的就是“How I wish I could calculate pi.”
用中文去背圆周率也很简单,因为每个数字都只有一个音节,这样背起来就如背诗一样,只不过有点言不及义,例如:
山巅一石一壶酒
3.14159
二侣舞扇舞
26535
把酒砌酒扇又搧
8979323
饱死罗.....
846.....
关於π的有趣发现
将π的头144个小数位数字相加,结果是666。144也等於(6+6)*(6+6)
爱因斯坦的生日恰好是在π日(3/14/1879)
从π的第523,551,502个小数位开始,是数列123456789。
从第359个位数开始,是数字360。也就是说第360个位数正好位於数字360的*。
在头一百万个小数中,除了2和4,其他数字都曾连续出现7次。

资料来源
<<神奇的π>> David Blatner 著 商周出版
http://www.geocities.com/monicachan006/know.html
http://netcity1.web.hinet.net/UserData/lsc24285/circle.html
<<新世纪数学>>1A 第7课 牛津大学出版社
分给我把最全的了

热心网友 时间:2022-05-21 00:52

1、实验时期

一块古巴比伦石匾(约产于公元前1900年至1600年)清楚地记载了圆周率 = 25/8 = 3.125,同一时期的古埃及文物,莱因德数学纸草书(Rhind Mathematical Papyrus)也表明圆周率等于分数16/9的平方,约等于3.1605。

2、 几何法时期

古希腊作为古代几何王国对圆周率的贡献尤为突出。古希腊大数学家阿基米德(公元前287–212 年) 开创了人类历史上通过理论计算圆周率近似值的先河。阿基米德从单位圆出发,先用内接正六边形求出圆周率的下界为3,再用外接正六边形并借助勾股定理求出圆周率的上界小于4。

3、分析法时期

这一时期人们开始利用无穷级数或无穷连乘积求π,摆脱可割圆术的繁复计算。无穷乘积式、无穷连分数、无穷级数等各种π值表达式纷纷出现,使得π值计算精度迅速增加。

4、计算机时代

电子计算机的出现使π值计算有了突飞猛进的发展。1949年,美国制造的世上首部电脑-ENIAC在阿伯丁试验场启用了。次年,里特韦斯纳、冯纽曼和梅卓普利斯利用这部电脑,计算出π的2037个小数位。

拓展资料:

圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。

在分析学里,π可以严格地定义为满足sin x = 0的最小正实数x。圆周率用希腊字母 π(读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。

在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。

参考资料: 百度百科 圆周率

热心网友 时间:2022-05-21 03:50

率的贡献尤为突出。古希腊大数学家阿基米德(公元前287–212 年) 开创了人类历史上通过理论计算圆周率近似值的先河。阿基米德从单位圆出发,先用内接正六边形求出圆周率的下界为3,再用外接正六边形并借助勾股定理求出圆周率的上界小于4。
接着,他对内接正六边形和外接正六边形的边数分别加倍,将它们分别变成内接正12边形和外接正12边形,再借助勾股定理改进圆周率的下界和上界。他逐步对内接正多边形和外接正多边形的边数加倍,直到内接正96边形和外接正96边形为止。
最后,他求出圆周率的下界和上界分别为223/71 和22/7, 并取它们的平均值3.141851 为圆周率的近似值。阿基米德用到了迭代算法和两侧数值*近的概念,称得上是“计算数学”的鼻祖。
南北朝时代著名数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7。他的辉煌成就比欧洲至少早了1000年。
其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲不知道是祖冲之先知道密率的,将密率错误的称之为安托尼斯率。
阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。
德国数学家柯伦于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。
斐波那契算出圆周率约为3.1418。   
韦达用阿基米德的方法,算出3.1415926535<π<3.1415926537   
他还是第一个以无限乘积叙述圆周率的人。   
鲁道夫万科伦以边数多过32000000000的多边形算出有35个小数位的圆周率。   
华理斯在1655年求出一道公式π/2=2×2×4×4×6×6×8×8...../3×3×5×5×7×7×9×9......   
欧拉发现的e的iπ次方加1等于0,成为证明π是超越数的重要依据。   
扩展资料:
魏晋时,刘徽曾用使正多边形的边数逐渐增加去*近圆周的方法(即“割圆术”),求得π的近似值3.1416。
汉朝时,张衡得出π的平方除以16等于5/8,即π等于10的开方(约为3.162)。虽然这个值不太准确,但它简单易理解,所以也在亚洲风行了一阵。 王蕃(229-267)发现了另一个圆周率值,这就是3.156,但没有人知道他是如何求出来的。   
公元5世纪,祖冲之和他的儿子以正24576边形,求出圆周率约为355/113,和真正的值相比,误差小于八亿分之一。这个纪录在一千年后才给打破。   
印度,约在公元530年,数学大师阿耶波多利用384边形的周长,算出圆周率约为√9.8684。   婆罗门笈多采用另一套方法,推论出圆周率等于10的算术平方根。
圆周率(Pai)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。 在分析学里,π可以严格地定义为满足sin x = 0的最小正实数x。
圆周率用字母 π(读作pài)表示,是一个常数(约等于3.141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。
在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。
参考资料来源:百度百科-圆周率
推荐于 2019-08-25
TA的回答是否帮助到你了?
能够帮助到你是知道答主们最快乐的事啦!
有帮助,为TA点赞
无帮助,看其他答案
查看全部17个回答
高三平面向量知识点总结_多数人不知道的提分秘诀
根据文中提到的圆周率为您推荐
高三平面向量知识点总结即将迎来新学期_成绩总是落后于别人_就是这个方法_成绩上去了高三平面向量知识点总结自从北大的导师教了我一套学习方法_猛提300多分_再也不担心考试问题了
hy.xazhangyj.cn广告
鼻子塌鼻子,塌鼻梁,满足您的高挺翘,针对鼻头大
在线咨询值得一看的鼻子相关信息推荐
鼻子塌鼻子联合丽格医院睿恒,针对鼻头大。塌鼻梁。鼻头短小等量身定制出适合你的鼻部术式。满足您的高挺翘,自然柔和
4001581581.com广告
1条评论
热心网友赞
l
评论详情
— 你看完啦,以下内容更有趣 —
圆周率的历史资料有关内容
圆周率的历史资料: 古希腊作为古代几何王国对圆周率的贡献尤为突出。古希腊大数学家阿基米德 开创了人类历史上通过理论计算圆周率近似值的先河。 阿基米德从单位圆出发,先用内接正六边形求出圆周率的下界为3,再用外接正六边形并借助勾股定理求出圆周率的上界小于4。 接着,他对内接正六边形和外接正六边形的边数分别加倍,将它们分别变成内接正12边形和外接正12边形,再借助勾股定理改进圆周率的下界和上界。 他逐步对内接正多边形和外接正多边形的边数加倍,直到内接正96边形和外接正96边形为止。最后,他求出圆周率的下界和上界分别为223/71 和22/7, 并取它们的平均值3.141851 为圆周率的近似值。 扩展资料: 把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。 如果以39位精度的圆周率值,来计算宇宙的大小,误差还不到一个原子的体积 。以前的人计算圆周率,是要探究圆周率是否循环小数。 自从1761年兰伯特证明了圆周率是无理数,1882年林德曼证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了,π在许多数学领域都有非常重要的作用。 参考资料来源:百度百科—圆周率
178赞·7,511浏览2019-07-05
圆周率的历史
圆周率的历史: 一、实验时期 一块古巴比伦石匾(约产于公元前1900年至1600年)清楚地记载了圆周率 = 25/8 = 3.125。同一时期的古埃及文物,莱因德数学纸草书也表明圆周率等于分数16/9的平方,约等于3.1605。 埃及人似乎在更早的时候就知道圆周率了。 英国作家 John Taylor (1781–1864) 在其名著《金字塔》中指出,造于公元前2500年左右的胡夫金字塔和圆周率有关。例如,金字塔的周长和高度之比等于圆周率的两倍,正好等于圆的周长和半径之比。 公元前800至600年成文的古印度宗教巨著《百道梵书》显示了圆周率等于分数339/108,约等于3.139。 二、几何法时期 古希腊作为古代几何王国对圆周率的贡献尤为突出。古希腊大数学家阿基米德(公元前287–212 年) 开创了人类历史上通过理论计算圆周率近似值的先河。阿基米德从单位圆出发,先用内接正六边形求出圆周率的下界为3,再用外接正六边形并借助勾股定理求出圆周率的上界小于4。 接着,他对内接正六边形和外接正六边形的边数分别加倍,将它们分别变成内接正12边形和外接正12边形,再借助勾股定理改进圆周率的下界和上界。他逐步对内接正多边形和外接正多边形的边数加倍,直到内接正96边形和外接正96边形为止。 最后,他求出圆周率的下界和上界分别为223/71 和22/7, 并取它们的平均值3.141851 为圆周率的近似值。阿基米德用到了迭代算法和两侧数值*近的概念,称得上是“计算数学”的鼻祖。 中国古算书《周髀算经》(约公元前2世纪)的中有“径一而周三”的记载,意即取π=3。汉朝时,张衡得出π²除以16约等于8分之5,即π约等于根号十(约为3.162)。这个值不太准确,但它简单易理解。 公元263年,中国数学家刘徽用“割圆术”计算圆周率,他先从圆内接正六边形,逐次分割一直算到圆内接正192边形。他说“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”,包含了求极限的思想。 刘徽给出π=3.141024的圆周率近似值,刘徽在得圆周率=3.14之后,将这个数值和晋武库中汉王莽时代制造的铜制体积度量衡标准嘉量斛的直径和容积检验,发现3.14这个数值还是偏小。于是继续割圆到1536边形,求出3072边形的面积,得到令自己满意的圆周率3927除以1250约等于3.1416。 公元480年左右,南北朝时期的数学家祖冲之进一步得出精确到小数点后7位的结果,给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355除以133和约率22除以7。密率是个很好的分数近似值,要取到52163除以16604才能得出比355除以113略准确的近似。 在之后的800年里祖冲之计算出的π值都是最准确的。其中的密率在西方直到1573年才由德国人奥托(Valentinus Otho)得到,1625年发表于荷兰工程师安托尼斯(Metius)的著作中,欧洲称之为Metius' number。 约在公元530年,印度数学大师阿耶波多算出圆周率约为根号9.8684。婆罗摩笈多采用另一套方法,推论出圆周率等于10的算术平方根。 阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。德国数学家鲁道夫·范·科伊伦(Ludolph van Ceulen)于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。 三、分析法时期 这一时期人们开始利用无穷级数或无穷连乘积求π,摆脱可割圆术的繁复计算。无穷乘积式、无穷连分数、无穷级数等各种π值表达式纷纷出现,使得π值计算精度迅速增加。 第一个快速算法由英国数学家梅钦(John Machin)提出,1706年梅钦计算π值突破100位小数大关,他利用了如下公式:π/4=4 arctan1/5-arctan 1/239,其中arctan x可由泰勒级数算出。类似方法称为“梅钦类公式”。 斯洛文尼亚数学家Jurij Vega于1789年得出π的小数点后首140位,其中只有137位是正确的。这个世界纪录维持了五十年。他利用了梅钦于1706年提出的数式。 到1948年英国的弗格森(D. F. Ferguson)和美国的伦奇共同发表了π的808位小数值,成为人工计算圆周率值的最高纪录。 四、计算机时代 电子计算机的出现使π值计算有了突飞猛进的发展。1949年,美国制造的世上首部电脑-ENIAC(Electronic Numerical Integrator And Computer)在阿伯丁试验场启用了。次年,里特韦斯纳、冯纽曼和梅卓普利斯利用这部电脑,计算出π的2037个小数位。 这部电脑只用了70小时就完成了这项工作,扣除插入打孔卡所花的时间,等于平均两分钟算出一位数。五年后,IBM NORC(海军兵器研究计算机)只用了13分钟,就算出π的3089个小数位。 科技不断进步,电脑的运算速度也越来越快,在60年代至70年代,随着美、英、法的电脑科学家不断地进行电脑上的竞争,π的值也越来越精确。在1973年,Jean Guilloud和Martin Bouyer以电脑CDC 7600发现了π的第一百万个小数位。 在1976年,新的突破出现了。萨拉明(Eugene Salamin)发表了一条新的公式,那是一条二次收敛算则,也就是说每经过一次计算,有效数字就会倍增。高斯以前也发现了一条类似的公式,但十分复杂,在那没有电脑的时代是不可行的。 这算法被称为布伦特-萨拉明(或萨拉明-布伦特)演算法,亦称高斯-勒让德演算法。 1989年美国哥伦比亚大学研究人员用克雷-2型(Cray-2)和IBM-3090/VF型巨型电子计算机计算出π值小数点后4.8亿位数,后又继续算到小数点后10.1亿位数。2010年1月7日——法国工程师法布里斯·贝拉将圆周率算到小数点后27000亿位。 2010年8月30日——日本计算机奇才近藤茂利用家用计算机和云计算相结合,计算出圆周率到小数点后5万亿位。 2011年10月16日,日本长野县饭田市公司职员近藤茂利用家中电脑将圆周率计算到小数点后10万亿位,刷新了2010年8月由他自己创下的5万亿位吉尼斯世界纪录。56岁的近藤茂使用的是自己组装的计算机,从10月起开始计算,花费约一年时间刷新了纪录。 扩展资料 圆周率的记号:π是第十六个希腊字母的小写。π这个符号,亦是希腊语 περιφρεια (表示周边,地域,圆周等意思)的首字母。 1706年英国数学家威廉·琼斯(William Jones ,1675-1749)最先使用“π”来表示圆周率。 1736年,瑞士大数学家欧拉也开始用π表示圆周率。从此,π便成了圆周率的代名词。 要注意不可把π和其大写Π混用,后者是指连乘的意思 参考资料来源:百度百科-圆周率
253赞·8,016浏览2019-05-31
圆周率历史简介
约2000年前,中国的古代数学著作《周髀算经》中就有“周三径一”的说法,意思是说圆的周长是它直径的3倍。 约1500年前,中国有一位伟大的数学家、天文家祖冲之,他计算出圆周率应在3.1415326和3.1415927之间,成为世界上第一个把圆周率的值精确到7位小数的人。他这项伟大成就比国外数学家得出这样精确数值的时间,至少要早1000年。现在人们用计算机算出的圆周率,小数点后面已经达到上亿位。
521赞·5,218浏览2016-12-02
圆周率的历史资料
古希腊作为古代几何王国对圆周率的贡献尤为突出。古希腊大数学家阿基米德(公元前287–212 年) 开创了人类历史上通过理论计算圆周率近似值的先河。 中国南北朝时期的著名数学家祖冲之(429-500)首次将“圆周率”精算到小数第七位,即在3.1415926和3.1415927之间,他提出的“密率与约率”对数学的研究有重大贡献。 直到15世纪,阿拉伯数学家阿尔·卡西才以“精确到小数点后17位”打破了这一纪录。 代表“圆周率”的字母是第十六个希腊字母的小写。也是希腊语 περιφρεια(表示周边,地域,圆周)的首字母。 1706年英国数学家威廉·琼斯(William Jones, 1675-1749)最先使用“”来表示圆周率。1736年,瑞士数学家欧拉(Leonhard Euler, 1707-1783)也开始用表示圆周率。从此,便成了圆周率的代名词。 扩展资料: 电子计算机的出现使π值计算有了突飞猛进的发展。1949年,美国制造的世上首部电脑-ENIAC(ElectronicNumerical Integrator And Computer)在阿伯丁试验场启用了。次年,里特韦斯纳、冯纽曼和梅卓普利斯利用这部电脑,计算出π的2037个小数位。这部电脑只用了70小时就完成了这项工作,扣除插入打孔卡所花的时间,等于平均两分钟算出一位数。 五年后,IBM NORC(海军兵器研究计算机)只用了13分钟,就算出π的3089个小数位。 参考资料来源:百度百科-圆周率
2赞·3,433浏览2019-09-30
关于圆周率的历史资料
圆周率—π ▲什麼是圆周率? 圆周率是一个常数,是代表圆周和直径的比例。它是一个无理数,即是一个无限不循环小数。但在日常生活中,通常都用3.14来代表圆周率去进行计算,即使是工程师或物理学家要进行较精密的计算,也只取值至小数点后约20位。 ▲什麼是π? π是第十六个希腊字母,本来它是和圆周率没有关系的,但大数学家欧拉在一七三六年开始,在书信和论文中都用π来代表圆周率。既然他是大数学家,所以人们也有样学样地用π来表圆周率了。但π除了表示圆周率外,也可以用来表示其他事物,在统计学中也能看到它的出现。 ▲圆周率的发展史 在历史上,有不少数学家都对圆周率作出过研究,当中著名的有阿基米德(Archimedes of Syracuse)、托勒密(Claudius Ptolemy)、张衡、祖冲之等。他们在自己的国家用各自的方法,辛辛苦苦地去计算圆周率的值。下面,就是世上各个地方对圆周率的研究成果。 亚洲 中国: 魏晋时,刘徽曾用使正多边形的边数逐渐增加去*近圆周的方法(即「割圆术」),求得π的近似值3.1416。 汉朝时,张衡得出π的平方除以16等於5/8,即π等於10的开方(约为3.162)。虽然这个值不太准确,但它简单易理解,所以也在亚洲风行了一阵。 王蕃(229-267)发现了另一个圆周率值,这就是3.156,但没有人知道他是如何求出来的。 公元5世纪,祖冲之和他的儿子以正24576边形,求出圆周率约为355/113,和真正的值相比,误差小於八亿分之一。这个纪录在一千年后才给打破。 印度: 约在公元530年,数学大师阿耶波多利用384边形的周长,算出圆周率约为√9.8684。 婆罗门笈多采用另一套方法,推论出圆周率等於10的平方根。 欧洲 斐波那契算出圆周率约为3.1418。 韦达用阿基米德的方法,算出3.1415926535<π<3.1415926537 他还是第一个以无限乘积叙述圆周率的人。 鲁道夫万科伦以边数多过32000000000的多边形算出有35个小数位的圆周率。 华理斯在1655年求出一道公式π/2=2×2×4×4×6×6×8×8...../3×3×5×5×7×7×9×9...... 欧拉发现的 e的iπ次方加1等於0,成为证明π是超越数的重要依据。 之后,不断有人给出反正切公式或无穷级数来计算π,在这里就不多说了。 π与电脑的关系 在1949年,美国制造的世上首部电脑—ENIAC(Electronic Numerical Interator and Computer)在亚伯丁试验场启用了。次年,里特韦斯纳、冯纽曼和梅卓普利斯利用这部电脑,计算出π的2037个小数位。这部电脑只用了70小时就完成了这项工作,扣除插入打孔卡所花的时间,等於平均两分钟算出一位数。五年后,NORC(海军兵器研究计算机)只用了13分钟,就算出π的3089个小数位。科技不断进步,电脑的运算速度也越来越快,在60年代至70年代,随著美、英、法的电脑科学家不断地进行电脑上的竞争,π的值也越来越精确。在1973年,Jean Guilloud和M. Bouyer发现了π的第一百万个小数位。 在1976年,新的突破出现了。萨拉明(Eugene Salamin)发表了一条新的公式,那是一条二次收歛算则,也就是说每经过一次计算,有效数字就会倍增。高斯以前也发现了一条类似的公式,但十分复杂,在那没有电脑的时代是不可行的。之后, 不断有人以高速电脑结合类似萨拉明的算则来计算π的值。目前为止,π的值己被算至小数点后51,000,000,000个位。 为什麼要继续计算π 其实,即使是要求最高、最准确的计算,也用不著这麼多的小数位,那麼,为什麼人们还要不断地努力去计算圆周率呢? 这是因为,用这个方法就可以测试出电脑的毛病。如果在计算中得出的数值出了错,这就表示硬体有毛病或软体出了错,这样便需要进行更改。同时,以电脑计算圆周率也能使人们产生良性的竞争,,科技也能得到进步,从而改善人类的生活。就连微积分、高等三角恒等式,也是有研究圆周率的推动,从而发展出来的。 ▲π的年表 圆周率的发展 年代 求证者 内容 古代 中国周髀算经 周一径三 圆周率 = 3 西方圣经 元前三世 阿基米德(希腊) 1. 圆面积等於分别以半圆周和径为边长的矩形 的面积 2.圆面积与以直径为长的正方形面积之比为11:14 3. 圆的周长与直径之比小於3 1/7 ,大於 3 10/71 三世纪 刘徽 中国 用割圆术得圆周率=3.1416称为'徽率' 五世纪 祖冲之 中国 1. 3.1415926<圆周率<3.1415927 2. 约率 = 22/7 3. 密率 = 355/113 1596年 鲁道尔夫 荷兰 正确计萛得的35 位数字 1579年 韦达 法国 '韦达公式'以级数无限项乘积表示 1600年 威廉.奥托兰特 英国 用/σ表示圆周率 π是希腊文圆周的第一个字母 σ是希腊文直径的第一个字母 1655年 渥里斯 英国 开创利用无穷级数求的先例 1706年 马淇 英国 '马淇公式'计算出的100 位数字 1706年 琼斯 英国 首先用表示圆周率 1789年 乔治.威加 英国 准确计萛至126 位 1841年 鲁德福特 英国 准确计萛至152 位 1847年 克劳森 英国 准确计萛至248 位 1873年 威廉.谢克斯 英国 准确计萛至527 位 1948年 费格森和雷恩奇 英国 美国 准确计萛至808 位 1949年 赖脱威逊 美国 用计算机将计算到2034位 现代 用电子计算机可将计算到亿位 ▲背诵π 历来都有不少人想挑战自己的记忆力,他们通常以圆周率为目标。目前的世界记录是由敬之后藤创下的,他在1995年花了9个多小时,背诵出圆周率的42,000个位数。 目前,最常用的记忆圆周率技巧就是字长法,以每个字的字数代表圆周率的一个位数。在这种方法中最简单的就是“How I wish I could calculate pi.” 用中文去背圆周率也很简单,因为每个数字都只有一个音节,这样背起来就如背诗一样,只不过有点言不及义,例如: 山巅一石一壶酒 3.14159 二侣舞扇舞 26535 把酒砌酒扇又搧 8979323 饱死罗..... 846..... 关於π的有趣发现 将π的头144个小数位数字相加,结果是666。144也等於(6+6)*(6+6) 爱因斯坦的生日恰好是在π日(3/14/1879) 从π的第523,551,502个小数位开始,是数列123456789。 从第359个位数开始,是数字360。也就是说第360个位数正好位於数字360的*。 在头一百万个小数中,除了2和4,其他数字都曾连续出现7次。 资料来源 > David Blatner 著 商周出版 http://www.geocities.com/monicachan006/know.html http://netcity1.web.hinet.net/UserData/lsc24285/circle.html >1A 第7课 牛津大学出版社
383赞·5,265浏览2017-11-22
高中数学平面向量公式大全_成绩查询入口
本月6110人已申请相关服务
咨询
西安黑色玫瑰教育科技有限公司广告
高中数学椭圆知识点总结_一个简单的方法_点击查看
本月6110人已申请相关服务
hy.xazyjlj.cn广告
慈禧的尸体等了一年之久才下葬,而出殡的当天臭气熏天,真是这样吗?
慈禧的尸体确实存放了一年,但她的棺椁使用的金丝楠木,而之所以会臭气熏天的原因是因为她的随葬品中有的食
25条回答·3,155人在看
太岁是什么?犯太岁又是什么意思?
热词课代表
上百度知道,你想要的热词都在这里
关注
161,444播放
初中毕业就去打工的人,后来怎么样了?
不得不承认,人的命运有369等之分。这些孩子上完初中就打工很可怜,但更可怜的我们都不知道。我的初中同
786条回答·38,861人在看
为什么职场争斗中认真干活的人会败给不干活的人?
在职场上能够游刃有余并且升职加薪的人,大部分都是能够与领导同步的人。一味的埋头苦干,领导虽然看到用户
2,369条回答·13,221人在看
孙尚香墓出土,打开墓室以后,为何专家直呼太可怜了?
因为孙尚香的墓里只埋了她一个人,这也就证明了刘备在后期与孙吴交好的时候也没有想起来把自己的夫人接回去
11条回答·571人在看
你好,请问事业单位工龄满15年辞职后可享受什么待遇?
1、如果辞职仍然可以享受养老保险,但是要交满十五年。2、如果事业单位在编人员辞职后自主创业的情况,

热心网友 时间:2022-05-21 07:05

圆周率—π
▲什麼是圆周率?
圆周率是一个常数,是代表圆周和直径的比例。它是一个无理数,即是一个无限不循环小数。但在日常生活中,通常都用3.14来代表圆周率去进行计算,即使是工程师或物理学家要进行较精密的计算,也只取值至小数点后约20位。
▲什麼是π?
π是第十六个希腊字母,本来它是和圆周率没有关系的,但大数学家欧拉在一七三六年开始,在书信和论文中都用π来代表圆周率。既然他是大数学家,所以人们也有样学样地用π来表圆周率了。但π除了表示圆周率外,也可以用来表示其他事物,在统计学中也能看到它的出现。
▲圆周率的发展史
在历史上,有不少数学家都对圆周率作出过研究,当中著名的有阿基米德(Archimedes of Syracuse)、托勒密(Claudius Ptolemy)、张衡、祖冲之等。他们在自己的国家用各自的方法,辛辛苦苦地去计算圆周率的值。下面,就是世上各个地方对圆周率的研究成果。
亚洲
中国:
魏晋时,刘徽曾用使正多边形的边数逐渐增加去*近圆周的方法(即「割圆术」),求得π的近似值3.1416。
汉朝时,张衡得出π的平方除以16等於5/8,即π等於10的开方(约为3.162)。虽然这个值不太准确,但它简单易理解,所以也在亚洲风行了一阵。
王蕃(229-267)发现了另一个圆周率值,这就是3.156,但没有人知道他是如何求出来的。
公元5世纪,祖冲之和他的儿子以正24576边形,求出圆周率约为355/113,和真正的值相比,误差小於八亿分之一。这个纪录在一千年后才给打破。
印度:
约在公元530年,数学大师阿耶波多利用384边形的周长,算出圆周率约为√9.8684。
婆罗门笈多采用另一套方法,推论出圆周率等於10的平方根。
欧洲
斐波那契算出圆周率约为3.1418。
韦达用阿基米德的方法,算出3.1415926535<π<3.1415926537
他还是第一个以无限乘积叙述圆周率的人。
鲁道夫万科伦以边数多过32000000000的多边形算出有35个小数位的圆周率。
华理斯在1655年求出一道公式π/2=2×2×4×4×6×6×8×8...../3×3×5×5×7×7×9×9......
欧拉发现的 e的iπ次方加1等於0,成为证明π是超越数的重要依据。
之后,不断有人给出反正切公式或无穷级数来计算π,在这里就不多说了。
π与电脑的关系
在1949年,美国制造的世上首部电脑—ENIAC(Electronic Numerical Interator and Computer)在亚伯丁试验场启用了。次年,里特韦斯纳、冯纽曼和梅卓普利斯利用这部电脑,计算出π的2037个小数位。这部电脑只用了70小时就完成了这项工作,扣除插入打孔卡所花的时间,等於平均两分钟算出一位数。五年后,NORC(海军兵器研究计算机)只用了13分钟,就算出π的3089个小数位。科技不断进步,电脑的运算速度也越来越快,在60年代至70年代,随著美、英、法的电脑科学家不断地进行电脑上的竞争,π的值也越来越精确。在1973年,Jean Guilloud和M. Bouyer发现了π的第一百万个小数位。
在1976年,新的突破出现了。萨拉明(Eugene Salamin)发表了一条新的公式,那是一条二次收歛算则,也就是说每经过一次计算,有效数字就会倍增。高斯以前也发现了一条类似的公式,但十分复杂,在那没有电脑的时代是不可行的。之后, 不断有人以高速电脑结合类似萨拉明的算则来计算π的值。目前为止,π的值己被算至小数点后51,000,000,000个位。
为什麼要继续计算π
其实,即使是要求最高、最准确的计算,也用不著这麼多的小数位,那麼,为什麼人们还要不断地努力去计算圆周率呢?
这是因为,用这个方法就可以测试出电脑的毛病。如果在计算中得出的数值出了错,这就表示硬体有毛病或软体出了错,这样便需要进行更改。同时,以电脑计算圆周率也能使人们产生良性的竞争,,科技也能得到进步,从而改善人类的生活。就连微积分、高等三角恒等式,也是有研究圆周率的推动,从而发展出来的。
▲π的年表
圆周率的发展
年代 求证者 内容
古代 中国周髀算经 周一径三
圆周率 = 3
西方圣经
元前三世 阿基米德(希腊) 1. 圆面积等於分别以半圆周和径为边长的矩形
的面积
2.圆面积与以直径为长的正方形面积之比为11:14
3. 圆的周长与直径之比小於3 1/7 ,大於
3 10/71
三世纪 刘徽
中国 用割圆术得圆周率=3.1416称为'徽率'
五世纪 祖冲之
中国 1. 3.1415926<圆周率<3.1415927
2. 约率 = 22/7
3. 密率 = 355/113
1596年 鲁道尔夫
荷兰 正确计萛得的35 位数字
1579年 韦达
法国 '韦达公式'以级数无限项乘积表示
1600年 威廉.奥托兰特
英国 用/σ表示圆周率
π是希腊文圆周的第一个字母
σ是希腊文直径的第一个字母
1655年 渥里斯
英国 开创利用无穷级数求的先例
1706年 马淇
英国 '马淇公式'计算出的100 位数字
1706年 琼斯
英国 首先用表示圆周率
1789年 乔治.威加
英国 准确计萛至126 位
1841年 鲁德福特
英国 准确计萛至152 位
1847年 克劳森
英国 准确计萛至248 位
1873年 威廉.谢克斯
英国 准确计萛至527 位
1948年 费格森和雷恩奇
英国 美国 准确计萛至808 位
1949年 赖脱威逊
美国 用计算机将计算到2034位
现代 用电子计算机可将计算到亿位

▲背诵π
历来都有不少人想挑战自己的记忆力,他们通常以圆周率为目标。目前的世界记录是由敬之后藤创下的,他在1995年花了9个多小时,背诵出圆周率的42,000个位数。
目前,最常用的记忆圆周率技巧就是字长法,以每个字的字数代表圆周率的一个位数。在这种方法中最简单的就是“How I wish I could calculate pi.”
用中文去背圆周率也很简单,因为每个数字都只有一个音节,这样背起来就如背诗一样,只不过有点言不及义,例如:
山巅一石一壶酒
3.14159
二侣舞扇舞
26535
把酒砌酒扇又搧
8979323
饱死罗.....
846.....
关於π的有趣发现
将π的头144个小数位数字相加,结果是666。144也等於(6+6)*(6+6)
爱因斯坦的生日恰好是在π日(3/14/1879)
从π的第523,551,502个小数位开始,是数列123456789。
从第359个位数开始,是数字360。也就是说第360个位数正好位於数字360的*。
在头一百万个小数中,除了2和4,其他数字都曾连续出现7次。

资料来源
<<神奇的π>> David Blatner 著 商周出版
http://www.geocities.com/monicachan006/know.html
http://netcity1.web.hinet.net/UserData/lsc24285/circle.html
<<新世纪数学>>1A 第7课 牛津大学出版社

热心网友 时间:2022-05-21 10:36

学生在接触这部分内容之前,在“圆的周长”部分进行了简单的圆周率的测量试验研究时,部分同学已经了解了祖冲之的相关成就,然而对阿基米德和刘徽的成就知之甚少,对“投针试验”基本上没有听说过;另外,学生的了解一般停留在简单的知识常识上,对于圆周率的计算研究方法及其蕴含的数学思想很少涉及。(经过简单调查,知道“祖冲之及其对圆周率的贡献的大约占90%,然而直到刘徽的割圆术的只有大约8%,听说过”投针试验“的人数为零。)

作为六年级的学生,作为处在高度现代化的城市——深圳的学生,他们运用图书、网络搜集信息的能力非常强,对于这部分阅读资料的兴趣浓厚,许多学生都已经迫不及待的阅读、查阅(已经提前阅读的人数大约占85%)。因此,不妨把阅读任务下放到课外,把搜集“圆周率的历史”资料作为课前实践作业,把课堂作为交流、释疑的平台。

【学习目标】

知识与技能:阅读圆周率的发展简史,感受数学知识的探索过程, 了解圆周率的研究史上的相关知识及做出重要贡献的人物和研究方法。

过程与方法:通过自主搜集圆周率的相关资料、交流体验,培养收集信息、整合信息,提

高质疑、理解的能力。在阅读理解过程中,体验数学研究方法发展的过程、极限思想、圆周率精确位数的现代价值等,为今后的数学学习提供一定的参考价值。

情感态度价值观:通过阅读“圆周率的历史”,体验数学文化的魅力,激发研究数学的兴趣,在阅读刘徽、祖冲之的相关成就时激发民族自豪感。

【教学过程】

(一)让我们来交流搜集到的信息

师:回忆一下,怎样计算一个圆的周长?

师:在计算圆的周长的时候,需要用到圆周率。说到圆周率,我们知道它是圆的周长和直径之间固定的倍数关系,这是一个无限不循环小数,这么复杂的一个数,它是怎么来的呢?是一个人研究的结果吗?都有哪些研究方法呢?人们什么时候就发现了圆周率?圆周率发展的历史是怎么样的呢?……许多同学早就阅读了课本上的关于圆周率的历史资料,昨天也回去搜集了关于圆周率历史的信息,拿出来,让我们来交流一下搜集到的信息吧!

学生分小组交流信息,教师板书:圆周率的历史

(二)让我们这样来分享信息

师:我们收集到的资料可能各不相同,让我们来一同分享吧!

师:圆周率的研究历史经历的时间是很长的,我们搜集到的信息也是很丰富的,老师建议让我们这样来分享这些信息吧:把圆周率的历史分为三个时期——测量计算时期、推理计算时期、新方法时期,可以吗?

师:那大家先分小组商量一下怎么汇报,推荐代表,比一比,哪个小组汇报得清楚。

学生分小组商量,教师板书:实际测量时期、推理计算时期、新方法时期

师:在汇报的时候请介绍清楚代表人物、基本方法、大约年代、主要结论。

1.测量计算时期

师:哪个小组来介绍第一个时期——测量计算时期?

小组代表1:人们很早就注意到了圆周率。大约在2000多年前,中国的《周髀算经》就有介绍。方法是通过轮子转一圈的长度,观察到圆的周长和直径之间有一定的联系,通过测量、计算出圆的周长总是直径的3倍多。

掌声响起。

师:还有补充吗?

生1:《周髀算经》中的记载是“周三径一”。

生2:那时候的圆周率一般都采用3来计算圆的周长。

生3:*教中的《圣经》也把圆周率取为3。

师:谢谢你们的及时补充,不过,什么叫“周三径一”?搜集信息的时候考虑过吗?

生4:就是一个圆,“周”就是周长,“径”指的是直径,它的周长是3份的话,直径就是1份。

生5:哦,也就是一个圆的周长大约是直径的3倍。

师:我国的《周髀算经》比《圣经》要稍微早一些,不过在大约公元前950年,中国、印度、巴比伦几乎都在使用3这个数值来表示圆周率,人们对于圆周率的研究真够早的。

师:看看他们的研究方法,好像我们曾经用过。

生6:是的,我们在研究圆的周长的计算方法的时候,也是测量几个圆的周长,再除以直径,都是三倍多一些。

(教师板书:研究方法:观察、测量、计算,研究结论:周三径一)

2.推理计算时期

师:第二个时期。

小组代表2:我来汇报推理计算时期。我们收集到的信息是几何法时期。代表人物有古希腊的阿基米德、中国的刘徽、祖冲之。阿基米德用的方法是利用圆内接正多边形和圆的外切正多边形进行研究;刘徽用的是“割圆术”;祖冲之用的方法已经不是很清楚了。

师:能介绍一下,他们的成绩或者是结论吗?

小组代表3:我们小组可以介绍!阿基米德在《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为: <π< ,这是数学史上最早的,明确指出误差限度的π值;刘徽得到圆周率的近似值是3.14;祖冲之算出π的值在3.1415926到3.1415927之间,并且得到了π的两个分数形式的近似值约率为,密率为。

师:他们的年代?

小组代表5:我们小组来介绍,阿基米德和刘徽大约是同时代的人,不过阿基米德研究圆周率的时间比刘徽稍微早一些,但刘徽运用的方法和他不同。祖冲之大约在1500多年前。

师:他们三个人对于圆周率的贡献是很大的,在数学的历史上书写了浓墨重彩的一笔,刘徽和祖冲之也是我们中国的骄傲,大家想一想,祖冲之把圆周率精确到小数点后7位,这一成就在世界上领先了约1000年!

师:让我们来看看书上对于他们的介绍吧。

学生阅读教材第14页至15页关于阿基米德、刘徽和祖冲之的介绍。

师:在分享知识的同时,有问题一起分享、一起思考吗?

生7:祖冲之的成就中有一个名词叫“约率”,还有,什么叫“密率”?

师:祖冲之的成就虽然在1500多年前,但在现在仍然值得我们去慢慢推敲,让我们和这位同学一起看看祖冲之的这两个名词吧。

学生阅读。

生8:老师,我想“约率”应该是粗略的圆周率的意思吧,“密率”就是比较精确的圆周率。

同学们纷纷表示同意。

师:和真的都接近圆周率吗?让我们算一算,好吗?

男生计算、女生计算的小数值。通过计算发现确实非常接近。

师:能写出一个特别接近圆周率的分数,是一件非常有意思的事。

生9:不是很理解他们用的方法。

师:是啊,他们究竟用什么样的方法,能不需要测量就能计算圆周率呢?

教师展示多媒体课件:

阿基米德的方法:出示圆的内接六边形、外切正六边形图形;接着出示圆的内接正十二边形、外切正十二边形图形。

师:圆的周长处于内外两个正六边形之间,同样,也会处在内外两个正十二边形之间,这样,越来越接近圆的周长。

刘徽的方法:

他由圆内接正六边形算起,逐渐把边数加倍,算出正12边形、正24边形、正48边形、正96边形……的面积,这些面积会逐渐地接近圆面积。这是一种非常重要的数学思想。按照这样的思路,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率 为3.14和 3.1416这两个近似数值。

师:祖冲之用什么方法得到那么精确的圆周率,已经很难知道了,但可以肯定刘徽的方法给了他很大的启发和影响。

3.新方法时期

师:刘徽和祖冲之的方法,是不是就可以这样一直推下去呢?

生10:应该可以。

生11:可能不行,不然为什么一千多年没有再发展呢?

师:由于计算工具的*,可以说,祖冲之的成就已经把圆周率的精确程度推倒了极致,计算量太大了。但是,随着电子计算机的出现,这个问题顺利解决了,π小数点后面的精确数字发展到成千上万、甚至几万亿位。有些人还用圆周率来锻炼记忆能力呢。

师:另外,聪明的数学家还利用似乎与圆不相关“投针”的方法来计算圆周率,竟然和祖冲之的结果基本接近!让我们来欣赏一下圆周率的新方法时期吧。

学生看书第15页,“投针试验”和“电子计算机的*”部分。

师:怎么样?有什么想说的?

生12:电子计算机给我们解决了复杂的计算问题,数学家们主要就负责方法就可以了。

生13:这“投针试验”究竟是怎么回事?

许多学生表示同样的疑问。

多媒体课件演示布丰的“投针试验”。

(三)让我们来分享感受

师:我们还有许多感受没有说出来,也还有许多信息没有听到,让我们再次分享各自获得的信息和感想吧!

五、教学反思

《数学阅读》在课程改革之前的教材中从未涉及,就是在课程改革之后的教材中也很少安排。在和学生对“圆周率的历史”的共同解读之后,有了许多收获,也留下了一些思考:

1.丰富的内容,让学生学会获取

这部分内容丰富,他们也非常感兴趣,同时,作为现代城市的孩子,他们也有能力利用网络、书籍等自主获取圆周率历史的相关知识。事实证明,他们可以获得相关的大部分资料。

2.大量的信息,让学生学会分享

圆周率历史的信息量非常大,一个人获取的信息可能各有不同,此外,学生的获取信息的能力也各有差异,他们需要分享。在本节课中,我把“分享”作为主线,给他们设计好分享的步骤,主持分享的过程。他们在分享中互相学习,了解圆周率的历史、数学思想、民族自豪感……

3.深奥的数学思想和知识,需要怎样的引导和解释

在圆周率的历史中,涉及到许多深奥的数学思想和知识,有极限思想、概率思想、外切、内接、勾股定理等,虽然本节课的重点在感受圆周率的这一历史文化,但这些深奥的数学思想和知识,他们不会熟视无睹,他们渴望了解。因此,我准备了多媒体资料,给他们适当了解的机会,但学生在接触的过程中,似乎明白了一些,但也有一部分学生感觉疑问越来越多,怎样的引导才更为适合他们?

调查
暂时没有调查项目 评论 >>更多评论
目前已经有 55位网友对该文章进行评论
用户名: 游客评论需审核后才能出现
内容:
用户名: 密码:

设为首页|收藏本站|联系我们|网络报警
@2008 ALL RIGHTS RESERVED 成都市金牛区教育研究培训中心 Jinniu Ecational Bureau
地址:黄苑街19号 联系电话:87566013 邮编:610072
蜀ICP备08006046号
站长统计-当前在线[24]

热心网友 时间:2022-05-21 14:24

古今中外,许多人致力于圆周率的研究与计算。为了计算出圆周率的越来越好的近似值,一代代的数学家为这个神秘的数贡献了无数的时间与心血。十九世纪前,圆周率的计算进展相当缓慢,十九世纪后,计算圆周率的世界纪录频频创新。整个十九世纪,可以说是圆周率的手工计算量最大的世纪。进入二十世纪,随着计算机的发明,圆周率的计算有了突飞猛进。借助于超级计算机,人们已经得到了圆周率的2061亿位精度。历史上最马拉松式的计算,其一是德国的Ludolph Van Ceulen,他几乎耗尽了一生的时间,计算到圆的内接正262边形,于1609年得到了圆周率的35位精度值,以至于圆周率在德国被称为Ludolph数;其二是英国的William Shanks,他耗费了15年的光阴,在1874年算出了圆周率的小数点后707位。可惜,后人发现,他从第528位开始就算错了。把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。如果用Ludolph Van Ceulen算出的35位精度的圆周率值,来计算一个能把太阳系包起来的一个圆的周长,误差还不到质子直径的百万分之一。以前的人计算圆周率,是要探究圆周率是否循环小数。自从1761年Lambert证明了圆周率是无理数,1882年Lindemann证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。现在的人计算圆周率, 多数是为了验证计算机的计算能力,还有,就是为了兴趣。

热心网友 时间:2022-05-21 18:29

圆周率=

3.141592653589793238462643383279502884197169399375105820974944 592307816406286208998628034825342117067982148086513282306647 093844609550582231725359408128481117450284102701938521105559 644622948954930381964428810975665933446128475648233786783165 271201909145648566923460348610454326648213393607260249141273 724587006606315588174881520920962829254091715364367892590360 011330530548820466521384146951941511609433057270365759591953 092186117381932611793105118548074462379962749567351885752724 891227938183011949129833673362440656643086021394946395224737 190702179860943702770539217176293176752384674818467669405132 000568127145263560827785771342757789609173637178721468440901 224953430146549585371050792279689258923542019956112129021960 864034418159813629774771309960518707211349999998372978049951 059731732816096318595024459455346908302642522308253344685035 261931188171010003137838752886587533208381420617177669147303 598253490428755468731159562863882353787593751957781857780532 171226806613001927876611195909216420198938095257201065485863 278865936153381827968230301952035301852968995773622599413891 249721775283479131515574857242454150695950829533116861727855 889075098381754637464939319255060400927701671139009848824012 858361603563707660104710181942955596198946767837449448255379 774726847104047534646208046684259069491293313677028989152104 752162056966024058038150193511253382430035587640247496473263 914199272604269922796782354781636009341721641219924586315030 286182974555706749838505494588586926995690927210797509302955 321165344987202755960236480665499119881834797753566369807426 542527862551818417574672890977772793800081647060016145249192 173217214772350141441973568548161361157352552133475741849468 438523323907394143334547762416862518983569485562099219222184 272550254256887671790494601653466804988627232791786085784383 827967976681454100953883786360950680064225125205117392984896 084128488626945604241965285022210661186306744278622039194945 047123713786960956364371917287467764657573962413890865832645 995813390478027590099465764078951269468398352595709825822620 522489407726719478268482601476990902640136394437455305068203 496252451749399651431429809190659250937221696461515709858387 410597885959772975498930161753928468138268683868942774155991 855925245953959431049972524680845987273644695848653836736222 626099124608051243884390451244136549762780797715691435997700 129616089441694868555848406353422072225828488648158456028506 016842739452267467678895252138522549954666727823986456596116 354886230577456498035593634568174324112515076069479451096596 094025228879710893145669136867228748940560101503308617928680 920874760917824938589009714909675985261365549781893129784821 682998948722658804857564014270477555132379641451523746234364 542858444795265867821051141354735739523113427166102135969536 231442952484937187110145765403590279934403742007310578539062 198387447808478489683321445713868751943506430218453191048481 005370614680674919278191197939952061419663428754440643745123 718192179998391015919561814675142691239748940907186494231961 567945208095146550225231603881930142093762137855956638937787 083039069792077346722182562599661501421503068038447734549202 605414665925201497442850732518666002132434088190710486331734 649651453905796268561005508106658796998163574736384052571459 102897064140110971206280439039759515677157700420337869936007 230558763176359421873125147120532928191826186125867321579198 414848829164470609575270695722091756711672291098169091528017 350671274858322287183520935396572512108357915136988209144421 006751033467110314126711136990865851639831501970165151168517 143765761835155650884909989859982387345528331635507647918535 893226185489632132933089857064204675259070915481416549859461 637180270981994309924488957571282890592323326097299712084433 573265489382391193259746366730583604142813883032038249037589 852437441702913276561809377344403070746921120191302033038019 762110110044929321516084244485963766983895228684783123552658 2131449576857262433441893039686424341077322697802807318915 441101044682325271620105265227211166039666557309254711055785 376346682065310989652691862056476931257058635662018558100729 360659876486117910453348850346113657686753249441668039626579 787718556084552965412665408530614344431858676975145661406800 700237877659134401712749470420562230538994561314071127000407 854733269939081454664645880797270826683063432858785698305235 808933065757406795457163775254202114955761581400250126228594 130216471550979259230990796547376125517656751357517829666454 779174501129961489030463994713296210734043751895735961458901 938971311179042978285647503203198691514028708085990480109412

热心网友 时间:2022-05-21 23:07

我是你爸爸

热心网友 时间:2022-05-22 04:02

圆周率是指圆的周长和直径的比值,圆的周长和直径的比是6+2√3:3。
而3.1415926......本是正6x2ⁿ边率在代替圆周率。正6x2ⁿ边形的周长与过中心点的对角线的比叫做正6x2ⁿ边率。
圆周率的历史

约在公元530年,印度数学大师阿耶波多算出圆周率约为根号9.8684。婆罗摩笈多采用另一套方法,推论出圆周率等于10的算术平方根。阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。德国数学家鲁道夫·范·科伊伦(Ludolph van Ceulen)于1596年将π值算到20位小数值,后投入...

关于圆周率的历史

关于圆周率的历史如下:1、一块古巴比伦石匾(约产于公元前1900年至1600年)清楚地记载了圆周率=25/8=3.125。同一时期的古埃及文物,莱因德数学纸草书也表明圆周率等于分数16/9的平方,约等于3.1605。2、古希腊作为古代几何王国对圆周率的贡献尤为突出。古希腊大数学家阿基米德开创了人类历史上通过理论计...

圆周率的历史

圆周率的历史:一、起源与早期发展 圆周率,用希腊字母π表示,是一个在数学及生活中广泛应用的常数。它的历史可以追溯到古代文明时期,早在公元前,人们就开始尝试计算圆的周长与直径之比。在中国、印度、埃及及希腊等文明古国,都有关于圆周率的早期研究。二、古典数学时期的圆周率研究 古典数学时期,圆周...

圆周率的历史是什么?

圆周率的历史:1500多年前,南北朝时期的祖冲之计算出圆周率的值在3.1415926和3.1415927之间,并且得出了两个用分数表示的近似值:约率为22/7,密率为355/113。圆周率是圆的周长与直径的比值,一般用希腊字母表示,是一个在数学及物理学中普遍存在的数学常数。也等于圆形之面积与半径平方之比,是精确计算...

圆周率的历史发展

圆周率的历史发展分为古代文明时期、古希腊时期、中世纪时期、文艺复兴时期、现代时期。1、古代文明时期 在古代文明时期,人们已经开始研究圆周率。早在公元前2000年古埃及人就已经使用了一个近似值,将周长估算为直径的3.16倍古巴比伦人和古印度人也在研究圆周率,并使用了类似的方法进行估算。2、古希腊...

圆周率的研究历史

圆周率的研究历史如下:一、圆周率的历史:一块古巴比伦石匾(约产于公元前1900年至1600年)清楚地记载了圆周率 = 25/8 = 3.125。同一时期的古埃及文物,莱因德数学纸草书也表明圆周率等于分数16/9的平方,约等于3.1605。埃及人似乎在更早的时候就知道圆周率了。 英国作家 John Taylor (1781–1864) ...

圆周率的计算历史

表示圆的周长与直径的比值。它的近似值约为3.14159,但其精确值是一个无限不循环的小数、关于圆周率的计算历史可以追溯到古代文明时期。1、 古代埃及(公元前2500年左右)埃及人创造了一种近似值的计算方法,将一个正六边形的周长与直径相等。这样得到的近似值为3.16,接近于圆周率。2、 古希腊(公元...

圆周率的历史

在印度,约在公元530年,数学大师阿耶波多利用384边形的周长,算出圆周率约为根号9.8684。婆罗门笈多采用另—套方法,推论出圆周率等於10的平方根。在数学圆周率的历史上,在国外,斐波那契算出圆周率约为3.1418。韦达用阿基米德的方法,算出3.1415926535&lt;π&lt;3.1415926537。他还是第一个以无限乘积叙述圆周率...

圆周率的历史发展

一、实验时期 古巴比伦石匾(约公元前1900年至1600年制成)上的记载显示,圆周率被精确地表示为25/8,即3.125。同时,古埃及的莱因德数学纸草书(Rhind Mathematical Papyrus)揭示了圆周率可通过分数16/9的平方来计算,其值约为3.1605。二、几何法时期 阿基米德通过单位圆进行研究,首先通过内接正六边形...

圆周率的由来是什么?

《The Great Pyramid: Why was it built, and who built it》)中指出,造于公元前2500年左右的胡夫金字塔和圆周率有关。例如,金字塔的周长和高度之比等于圆周率的两倍,正好等于圆的周长和半径之比。公元前800至600年成文的古印度宗教巨著《百道梵书》显示了圆周率等于分数339/108,约等于3.139。

数学书上最恐怖一页 关于圆周率的知识 圆周率的简介50字 圆周率的历史20字 圆周率1000000位完整版 圆周率简介30字以内 π=3.1415926535......全部 圆周率的起源与发展 圆周率的来历和故事
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
求一个直接的MP4剪辑软件,要求很低,只要将一个视频分成几个就可以了... 成都列五中学很差吗? - 知乎 成都市金牛实验中学(北区)好还是成都的通锦中学好?还没想好上哪个学校... 我在珠村,请问广州机场路怎么走?坐什么车可以到? 芳村车站坐几号线能到广州中医药大学第一附属医院 怎么用Word的 无文本格式粘帖啊? 我想把动物的肉体分解到只剩下骨头'然后做个骨骼标本'我想过用食腐虫... ...就会有人和我说话,就感觉是内心里面的一个人 ae粒子realglow有红叉怎么去掉 芜湖万特乐园,苏中乐园,中华恐龙园哪个比较好玩啊?? 2018贵州省考成绩多久可以查询? 请问贵州公务员笔试总分是怎么算的? 贵州公务员考试笔试分数是怎么算的? 给几个 湖北方言 , 常用的 年贵州省公务员考试笔试成绩怎么计算 贵州公务员考试的总成绩是怎么算的? 哪位朋友能教我几句武汉,罗田的方言?非常感谢!!! 贵州省公务员考试笔试分计算方式 武汉人说的拐子是什么意思 湖北话“拐了哇“是什么意思? 好拐人是什么意思? 湖北话你蛮拐是什么意思 湖北话 “拐子”“打牛滴”什么意思 ? 湖北话的 拐子 是什么意思 技术指标中常见的趋势指标有哪些 通道指标能看清趋势吗 蛮拐是什么意思 大道趋势理论是老师独创的交易方法,其中大道被称为“*之线”的是? 武汉话「拐」褒义词是什么意思 什么是趋势指标 试用期急辞职,公司可以扣工资吗? 圆周率是谁最先计算出来的? 贵州公务员考试分数怎么算? 试用期辞职被扣一半工资合法吗? 圆周率的来历 试用期辞职扣工资合法吗 祖冲之是什么时候提出圆周率的 圆周率是谁计算出来的 试用期辞职扣一半工资合法吗 我在试用期内辞职,公司要扣我工资20%,是合法的吗 圆周率是怎么计算出的 试用期离职扣工资是不是犯法 什么叫圆周率?圆周率是怎么计算出来的? 员工试用期离职扣20%工资违返劳动法吗? 圆周率是怎么计算出来的? 试用期辞职扣一半工资合法吗? 圆周率是如何计算出的? 什么是海洋之星 试用期员工干完一个月后直接辞职不来了,我可以扣工资吗? 泰坦尼克号的海洋之星是什么宝石