关于DSA算法的相关信息
发布网友
发布时间:2022-04-30 03:46
我来回答
共1个回答
热心网友
时间:2023-10-10 06:08
DES算法
(文档类别:C++) 2003-11-19
DES算法理论
本世纪五十年代以来,密码学研究领域出现了最具代表性的两大成就。其中之一
就是1971年美国学者塔奇曼 (Tuchman)和麦耶(Meyer)根据信息论创始人香农
(Shannon)提出的“多重加密有效性理论”创立的,后于1977年由美国国家标准局颁
布的数据加密标准。
DES密码实际上是Lucifer密码的进一步发展。它是一种采用传统加密方法的区组
密码。
它的算法是对称的,既可用于加密又可用于解密。
美国国家标准局1973年开始研究除国防部外的其它部门的计算机系统的数据加密
标准,于1973年5月15日和1974年8月27日先后两次向公众发出了征求加密算法的公告。
加密算法要达到的目的通常称为DES密码算法要求主要为以下四点:
提供高质量的数据保护,防止数据未经授权的泄露和未被察觉的修改;具有相当
高的复杂性,使得破译的开销超过可能获得的利益,同时又要便于理解和掌握 DES密码
*的安全性应该不依赖于算法的保密,其安全性仅以加密密钥的保密为基础实现经
济,运行有效,并且适用于多种完全不同的应用。
1977年1月,美国****颁布:采纳IBM公司设计的方案作为非机密数据的正式数据
加密标准(DES枣Data Encryption Standard)。
目前在这里,随着三金工程尤其是金卡工程的启动,DES算法在POS、ATM、
磁卡及智能卡(IC卡)、加油站、高速公路收费站等领域被广泛应用,以此来实现关键
数据的保密,如信用卡持卡人的PIN的加密传输,IC卡与POS间的双向认证、金融交易数
据包的MAC校验等,均用到DES算法。
DES算法的入口参数有三个:Key、Data、Mode。其中Key为8个字节共64位,
是DES算法的工作密钥;Data也为8个字节64位,是要被加密或被解密的数据;Mode为
DES的工作方式,有两种:加密或解密。
DES算法是这样工作的:如Mode为加密,则用Key 去把数据Data进行加密,
生成Data的密码形式(64位)作为DES的输出结果;如Mode为解密,则用Key去把密码形
式的数据Data解密,还原为Data的明码形式(64位)作为DES的输出结果。在通信网络
的两端,双方约定一致的Key,在通信的源点用Key对核心数据进行DES加密,然后以密
码形式在公共通信网(如电话网)中传输到通信网络的终点,数据到达目的地后,用同
样的Key对密码数据进行解密,便再现了明码形式的核心数据。这样,便保证了核心数
据(如PIN、MAC等)在公共通信网中传输的安全性和可靠性。
通过定期在通信网络的源端和目的端同时改用新的Key,便能更进一步提高
数据的保密性,这正是现在金融交易网络的流行做法。
DES算法详述
DES算法把64位的明文输入块变为64位的密文输出块,它所使用的密钥也是
64位,其功能是把输入的64位数据块按位重新组合,并把输出分为L0、R0两部分,每部
分各长32位,其置换规则见下表:
58,50,12,34,26,18,10,2,60,52,44,36,28,20,12,4,
62,54,46,38,30,22,14,6,64,56,48,40,32,24,16,8,
57,49,41,33,25,17, 9,1,59,51,43,35,27,19,11,3,
61,53,45,37,29,21,13,5,63,55,47,39,31,23,15,7,
即将输入的第58位换到第一位,第50位换到第2位,...,依此类推,最后一
位是原来的第7位。L0、R0则是换位输出后的两部分,L0是输出的左32位,R0 是右32
位,例:设置换前的输入值为D1D2D3......D64,则经过初始置换后的结果为:
L0=D58D50...D8;R0=D57D49...D7。
经过26次迭代运算后。得到L16、R16,将此作为输入,进行逆置换,即得到
密文输出。逆置换正好是初始置的逆运算,例如,第1位经过初始置换后,处于第40
位,而通过逆置换,又将第40位换回到第1位,其逆置换规则如下表所示:
40,8,48,16,56,24,64,32,39,7,47,15,55,23,63,31,
38,6,46,14,54,22,62,30,37,5,45,13,53,21,61,29,
36,4,44,12,52,20,60,28,35,3,43,11,51,19,59,27,
34,2,42,10,50,18,58 26,33,1,41, 9,49,17,57,25,
放大换位表
32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 10,11,
12,13,12,13,14,15,16,17,16,17,18,19,20,21,20,21,
22,23,24,25,24,25,26,27,28,29,28,29,30,31,32, 1,
单纯换位表
16,7,20,21,29,12,28,17, 1,15,23,26, 5,18,31,10,
2,8,24,14,32,27, 3, 9,19,13,30, 6,22,11, 4,25,
在f(Ri,Ki)算法描述图中,S1,S2...S8为选择函数,其功能是把6bit数据变
为4bit数据。下面给出选择函数Si(i=1,2......的功能表:
选择函数Si
S1:
14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7,
0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8,
4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0,
15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13,
S2:
15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10,
3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5,
0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15,
13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9,
S3:
10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8,
13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1,
13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7,
1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12,
S4:
7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15,
13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9,
10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4,
3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14,
S5:
2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9,
14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6,
4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14,
11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3,
S6:
12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11,
10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8,
9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6,
4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13,
S7:
4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1,
?3,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6,
1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2,
6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12,
S8:
13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7,
1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2,
7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8,
2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11,
在此以S1为例说明其功能,我们可以看到:在S1中,共有4行数据,命名为0,
1、2、3行;每行有16列,命名为0、1、2、3,......,14、15列。
现设输入为: D=D1D2D3D4D5D6
令:列=D2D3D4D5
行=D1D6
然后在S1表中查得对应的数,以4位二进制表示,此即为选择函数S1的输
出。下面给出子密钥Ki(48bit)的生成算法
从子密钥Ki的生成算法描述图中我们可以看到:初始Key值为64位,但DES算
法规定,其中第8、16、......64位是奇偶校验位,不参与DES运算。故Key 实际可用位
数便只有56位。即:经过缩小选择换位表1的变换后,Key 的位数由64 位变成了56位,
此56位分为C0、D0两部分,各28位,然后分别进行第1次循环左移,得到C1、D1,将C1
(28位)、D1(28位)合并得到56位,再经过缩小选择换位2,从而便得到了密钥K0
(48位)。依此类推,便可得到K1、K2、......、K15,不过需要注意的是,16次循环
左移对应的左移位数要依据下述规则进行:
循环左移位数
1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1
以上介绍了DES算法的加密过程。DES算法的解密过程是一样的,区别仅仅在
于第一次迭代时用子密钥K15,第二次K14、......,最后一次用K0,算法本身并没有任
何变化。
DES算法具有极高安全性,到目前为止,除了用穷举搜索法对DES算法进行攻击
外,还没有发现更有效的办法。而56位长的密钥的穷举空间为256,这意味着如果一台
计算机的速度是每一秒种检测一百万个密钥,则它搜索完全部密钥就需要将近2285年的
时间,可见,这是难以实现的,当然,随着科学技术的发展,当出现超高速计算机后,
我们可考虑把DES密钥的长度再增长一些,以此来达到更高的保密程度。
由上述DES算法介绍我们可以看到:DES算法中只用到64位密钥中的其中56
位,而第8、16、24、......64位8个位并未参与DES运算,这一点,向我们提出了一个
应用上的要求,即DES的安全性是基于除了8,16,24,......64位外的其余56位的组合
变化256才得以保证的。因此,在实际应用中,我们应避开使用第8,16,24,......64
位作为有效数据位,而使用其它的56位作为有效数据位,才能保证DES算法安全可靠地
发挥作用。如果不了解这一点,把密钥Key的8,16,24,..... .64位作为有效数据使
用,将不能保证DES加密数据的安全性,对运用DES来达到保密作用的系统产生数据被破
译的危险,这正是DES算法在应用上的误区,是各级技术人员、各级领导在使用过程中
应绝对避免的,而当今各金融部门及非金融部门,在运用DES工作,掌握DES工作密钥
Key的领导、主管们,极易忽略,给使用中貌似安全的系统,留下了被人攻击、被人破
译的极大隐患。
DES算法应用误区的验证数据
笔者用Turbo C编写了DES算法程序,并在PC机上对上述的DES 算法的应用误
区进行了骓,其验证数据如下:
Key: 0x30 0x30 0x30 0x30......0x30(8个字节)
Data: 0x31 0x31 0x31 0x31......0x31(8个字节)
Mode: Encryption
结果:65 5e a6 28 cf 62 58 5f
如果把上述的Key换为8个字节的0x31,而Data和Mode均不变,则执行DES 后
得到的密文完全一样。类似地,用Key:8个0x32和用Key:8个0x33 去加密Data (8 个
0x31),二者的图文输出也是相同的:5e c3 ac e9 53 71 3b ba
我们可以得到出结论:
Key用0x30与用0x31是一样的;
Key用0x32与用0x33是一样的,......
当Key由8个0x32换成8个0x31后,貌似换成了新的Key,但由于0x30和0x31仅
仅是在第8,16,24......64有变化,而DES算法并不使用Key的第8,16,......64位作
为Key的有效数据位,故:加密出的结果是一样的。
DES解密的验证数据:
Key: 0x31 0x31......0x31(8个0x31)
Data: 65 5e a6 28 cf 62 58 5f
Mode: Decryption
结果:0x31 0x31......0x31(8个0x31)
由以上看出:DES算法加密与解密均工作正确。唯一需要避免的是:在应用
中,避开使用Key的第8,16......64位作为有效数据位,从而便避开了DES 算法在应用
中的误区。
避开DES算法应用误区的具体操作
在DES密钥Key的使用、管理及密钥更换的过程中,应绝对避开DES 算法的应
用误区,即:绝对不能把Key的第8,16,24......64位作为有效数据位,来对Key 进行
管理。这一点,特别推荐给金融银行界及非金融业界的领导及决策者们,尤其是负责管
理密钥的人,要对此点予以高度重视。有的银行金融交易网络,利用定期更换DES密钥
Key的办法来进一步提高系统的安全性和可靠性,如果忽略了上述应用误区,那么,更
换新密钥将是徒劳的,对金融交易网络的安全运行将是十分危险的,所以更换密钥一定
要保证新Key与旧Key真正的不同,即除了第8,16,24,...64位外其它位数据发生了变
化,请务必对此保持高度重视.
��DES算法把64位的明文输入块变为64位的密文输出块,它所使用的密钥也是
64位.
其功能是把输入的64位数据块按位重新组合,并把输出分为L0、R0两部分,每部
分各长32位,其置换规则见下表:
58,50,12,34,26,18,10,2,60,52,44,36,28,20,12,4,
62,54,46,38,30,22,14,6,64,56,48,40,32,24,16,8,
57,49,41,33,25,17, 9,1,59,51,43,35,27,19,11,3,
61,53,45,37,29,21,13,5,63,55,47,39,31,23,15,7,
即将输入的第58位换到第一位,第50位换到第2位,...,依此类推,最后一
位是原来的第7位。L0、R0则是换位输出后的两部分,L0是输出的左32位,R0 是右32
位,例:设置换前的输入值为D1D2D3......D64,则经过初始置换后的结果为:
L0=D58D50...D8;R0=D57D49...D7。
经过16次迭代运算后。得到L16、R16,将此作为输入,进行逆置换,即得到
密文输出。逆置换正好是初始置的逆运算,例如,第1位经过初始置换后,处于第40
位,而通过逆置换,又将第40位换回到第1位,其逆置换规则如下表所示:
40,8,48,16,56,24,64,32,39,7,47,15,55,23,63,31,
38,6,46,14,54,22,62,30,37,5,45,13,53,21,61,29,
36,4,44,12,52,20,60,28,35,3,43,11,51,19,59,27,
34,2,42,10,50,18,58 26,33,1,41, 9,49,17,57,25,
放大换位表
32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 10,11,
12,13,12,13,14,15,16,17,16,17,18,19,20,21,20,21,
22,23,24,25,24,25,26,27,28,29,28,29,30,31,32, 1,
单纯换位表
16,7,20,21,29,12,28,17, 1,15,23,26, 5,18,31,10,
2,8,24,14,32,27, 3, 9,19,13,30, 6,22,11, 4,25,
在f(Ri,Ki)算法描述图中,S1,S2...S8为选择函数,其功能是把6bit数据变
为4bit数据。下面给出选择函数Si(i=1,2......的功能表:
选择函数Si
S1:
14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7,
0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8,
4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0,
15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13,
S2:
15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10,
3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5,
0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15,
13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9,
S3:
10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8,
13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1,
13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7,
1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12,
S4:
7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15,
13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9,
10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4,
3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14,
S5:
2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9,
14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6,
4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14,
11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3,
S6:
12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11,
10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8,
9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6,
4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13,
S7:
4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1,
13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6,
1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2,
6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12,
S8:
13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7,
1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2,
7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8,
2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11,
在此以S1为例说明其功能,我们可以看到:在S1中,共有4行数据,命名为0,
1、2、3行;每行有16列,命名为0、1、2、3,......,14、15列。
现设输入为: D=D1D2D3D4D5D6
令:列=D2D3D4D5
行=D1D6
然后在S1表中查得对应的数,以4位二进制表示,此即为选择函数S1的输
出。下面给出子密钥Ki(48bit)的生成算法
从子密钥Ki的生成算法描述图中我们可以看到:初始Key值为64位,但DES算
法规定,其中第8、16、......64位是奇偶校验位,不参与DES运算。故Key 实际可用位
数便只有56位。即:经过缩小选择换位表1的变换后,Key 的位数由64 位变成了56位,
此56位分为C0、D0两部分,各28位,然后分别进行第1次循环左移,得到C1、D1,将C1
(28位)、D1(28位)合并得到56位,再经过缩小选择换位2,从而便得到了密钥K0
(48位)。依此类推,便可得到K1、K2、......、K15,不过需要注意的是,16次循环
左移对应的左移位数要依据下述规则进行:
循环左移位数
1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1
以上介绍了DES算法的加密过程。DES算法的解密过程是一样的,区别仅仅在
于第一次迭代时用子密钥K15,第二次K14、......,最后一次用K0,算法本身并没有任
何变化。
参考资料:http://www.vxcall.com/bbs/viewtopic.php?t=296&start=0&postdays=0&postorder=asc&highlight=