高等数学方程式解题
发布网友
发布时间:2022-04-30 04:52
我来回答
共1个回答
热心网友
时间:2023-10-14 04:14
1.就是等同于x处以tanx的极限,因为是等价无穷小,所以就等于1了
2.就是先把sin(x1+x2)拆成sinx1cosx2+cosx1sinx2,然后整个绝对值内的就变成了sinx1cosx2+(cosx1-1)sinx2,然后提个2出来就成了2乘以0.5sin(0.5x1)cos(0.5x1)cosx2-0.5(1-cosx1)sinx2,然后就是把0.5(1-cosx1)换成sin(0.5x1)的平方,然后提出sin(0.5x1)就是右边了
热心网友
时间:2023-10-14 04:14
1.就是等同于x处以tanx的极限,因为是等价无穷小,所以就等于1了
2.就是先把sin(x1+x2)拆成sinx1cosx2+cosx1sinx2,然后整个绝对值内的就变成了sinx1cosx2+(cosx1-1)sinx2,然后提个2出来就成了2乘以0.5sin(0.5x1)cos(0.5x1)cosx2-0.5(1-cosx1)sinx2,然后就是把0.5(1-cosx1)换成sin(0.5x1)的平方,然后提出sin(0.5x1)就是右边了