发布网友 发布时间:2022-05-01 05:17
共2个回答
热心网友 时间:2022-06-24 19:22
绘制y=x+(1/x)图像如下:
分析函数y=x+(1/x),定义域为[-∞,0)∩(0,+∞],所以x=0为函数的垂直渐近线。
对函数求导y'=1-(1/x^2),所以当x=±1时,y'=0,函数只有在有限的定义域内在能取到最值;x=±∞时候,y'=1,即y=x是函数y=x+(1/x)的斜渐近线。
双钩函数
函数f(x)=ax+b/x(a>0,b>0)叫做双钩函数。
该函数是奇函数,图象关于原点对称。位于第一、三象限。
当x>0时,由基本不等式可得:y≥2√ab
当且仅当ax=b/x,即x=√(b/a)时取等号。
故其顶点坐标为(√(b/a),2√ab),图象在(0,√(b/a))上是单调递减的,在(√(b/a),+∝)上是单调递增。
热心网友 时间:2022-06-24 19:23
绘制y=x+(1/x)图像如下:
分析函数y=x+(1/x),定义域为[-∞,0)∩(0,+∞],所以x=0为函数的垂直渐近线。
对函数求导y'=1-(1/x^2),所以当x=±1时,y'=0,函数只有在有限的定义域内在能取到最值;x=±∞时候,y'=1,即y=x是函数y=x+(1/x)的斜渐近线。
一般形式
f(x)=ax+b/x(a>0) 在高中文科数学中a多半仅为1,b值不定,理科数学变化更为复杂。
定义域为(-∞,0)∪(0,+∞)
值域为(-∞,-2√ab]∪[2√ab,+∞)
对勾函数的图像是分别以y轴和y=ax为渐近线的两支曲线,且图像上任意一点到两条渐近线的距离之积恰为渐近线夹角(0-180°)的正弦值与|b|的乘积。
注:对勾函数的图像是双曲线。实际上该图像是轴对称的,并可以通过双曲线的标准方程通过旋转角度得到。