发布网友 发布时间:2022-04-30 09:49
共4个回答
热心网友 时间:2022-06-20 18:15
不是方阵的矩阵没有逆矩阵的概念,逆矩阵只对方阵定义的。
逆矩阵的定义:假设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,他能够使得AB=BA=E ,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。注:E为单位矩阵。
如果矩阵A和B互逆,则AB=BA=I。由条件AB=BA以及矩阵乘法的定义可知,矩阵A和B都是方阵。再由条件AB=I以及定理“两个矩阵的乘积的行列式等于这两个矩阵的行列式的乘积”可知,这两个矩阵的行列式都不为0。
扩展资料:
对矩阵A施以初等行变换(初等列变换)就相当于在A的左边(右边)乘以相应的初等矩阵,所以可以同时对A和B施以相同的初等行变换(初等列变换)。这样,当矩阵A被变为时,就被变为A的逆矩阵。
广义逆阵(Generalized inverse)又称伪逆,一种对逆阵的推广。一般所说的伪逆是指摩尔-彭若斯广义逆,它是由E. H. Moore和Roger Penrose分别独立提出的。伪逆在求解线性最小二乘问题中有重要应用。
参考资料来源:百度百科——逆矩阵
热心网友 时间:2022-06-20 18:15
不是方阵就不存在逆矩阵,有逆矩阵的条件是可逆也就是矩阵行列式不等于,不是方阵的话行列式必然为0热心网友 时间:2022-06-20 18:16
不是方阵的矩阵没有逆矩阵的概念,逆矩阵只对方阵定义的。热心网友 时间:2022-06-20 18:16
A有逆矩阵的充要条件是|A|≠0,你举的这个明显线性相关,行列式=0,