关于统计中的假设检验步骤
发布网友
发布时间:2022-04-30 07:15
我来回答
共2个回答
热心网友
时间:2022-06-18 23:16
统计学中假设检验的基本步骤:
1.建立假设,确定检验水准α
假设有零假设(H0)和备择假设(H1)两个,零假设又叫作无效假设或检验假设。H0和H1的关系是互相对立的,如果拒绝H0,就要接受H1,根据备择假设不同,假设检验有单、双侧检验两种。
检验水准用α表示,通常取0.05或0.10,检验水准说明了该检验犯第一类错误的概率。
2.根据研究目的和设计类型选择适合的检验方法
这里的检验方法,是指参数检验方法,有u检验、t检验和方差分析三种,对应于不同的检验公式。对双样本资料,要注意区分成组设计和配对设计的资料类型。如果资料里有"配成对子"字样,或者是对同一对象用两种方法来处理,一般就可以判定是配对设计资料。
3.确定P值并作出统计结论
u检验得到的是u统计量或称u值,t检验得到的是t统计量或称t值。方差分析得到的是F统计量或称F值。将求得的统计量绝对值与界值相比,可以确定P值。
当α=0.05时,u值要和u界值1.96相比较,确定P值。如果u<1.96,则P>0.05.反之,如u>1.96,则P<0.05.t值要和某自由度的t界值相比较,确定P值。如果t值<t界值,故P>0.05.反之,如t>t界值,则P<0.05。
相同自由度的情况下,单侧检验的t界值要小于双侧检验的t界值,因此有可能出现算得的t值大于单侧t界值,而小于双侧t界值的情况,即单侧检验显著,双侧检验未必就显著,反之,双侧检验显著,单侧检验必然会显著。即单侧检验更容易出现阳性结论。
当P>0.05时,接受零假设,认为差异无统计学意义,或者说二者不存在质的区别。当P<0.05时,拒绝零假设,接受备择假设,认为差异有统计学意义,也可以理解为二者存在质的区别。但即使检验结果是P<0.01甚至P<0.001,都不说明差异相差很大,只表示更有把握认为二者存在差异。
热心网友
时间:2022-06-18 23:16
方差齐性检验和两样本平均数的差异性检验在假设检验的基本思想上是没有什么差异性的。只是所选择的抽样分布不一样。方差齐性检验所选择的抽样分布为F分布。
非正态分布就只能做非参数检验啦!
方差分析的前提是方差齐性检验。题目要求你做方差分析的话就要做齐性检验咯。