发布网友 发布时间:2022-04-20 18:41
共4个回答
热心网友 时间:2023-07-09 15:46
N全体非负整数(或自然数)组成的集合;R是实数集;Z是整数集;Q是有理数集;Z*是正整数集;N*是正整数集。
集合语言是现代数学的基本语言,可以简洁、准确、规范的表达数学内容.本节学习集合的一些基本知识,用最基本的集合语言表示有关数学对象和数学问题等,并能在自然语言、图形语言、集合语言之间进行转换。
扩展资料
在不同场合,同一语词可以表达集合概念,也可以不表达集合概念。如:“人”,在“人是由猿转化而来的”这一判断中,“人”是集合概念,因为不是每一个人都具有由猿转化的性质; 在“张三是人”这一判断中,“人”是非集合概念,表示人这一类动物或其中一分子。
区别某个语词是否表达集合概念,须结合语言环境而定,即需要把某一领域的每一个对象与概念反映的性质联系起来考察。准确区分集合概念与非集合概念,有助于避免犯混淆概念的逻辑错误。
参考资料来源:百度百科-集合概念
参考资料来源:百度百科-集合
热心网友 时间:2023-07-09 15:46
1、N:非负整数集合或自然数集合{0,1,2,3,…}。
2、N*或N+:正整数集合{1,2,3,…}。
3、Z:整数集合{…,-1,0,1,…}。
4、Q:有理数集合。
5、Q+:正有理数集合。
6、Q-:负有理数集合。
7、R:实数集合(包括有理数和无理数)。
8、R+:正实数集合。
9、R-:负实数集合。
10、C:复数集合。
11、∅ :空集(不含有任何元素的集合)。
扩展资料:
集合的性质
1、确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如“个子高的同学”“很小的数”都不能构成集合。这个性质主要用于判断一个集合是否能形成集合。
2、互异性:集合中任意两个元素都是不同的对象。如写成{3,2,2},等同于{2,3}。互异性使集合中的元素是没有重复,两个相同的对象在同一个集合中时,只能算作这个集合的一个元素。
3、无序性:{a,b,c}{c,b,a}是同一个集合。
4、纯粹性:所谓集合的纯粹性,如集合A={x|x<5},集合A 中所有的元素都要符合x<5,这就是集合纯粹性。
5、完备性:仍用上面的例子,所有符合x<2的数都在集合A中,这就是集合完备性。完备性与纯粹性是遥相呼应的。
热心网友 时间:2023-07-09 15:47
N是非负整数集;自然数集热心网友 时间:2023-07-09 15:47
N是自然数,Z是整理数