光合作用的三个阶段99
发布网友
发布时间:2023-11-02 03:13
我来回答
共4个回答
热心网友
时间:2024-04-04 06:12
第一阶段:在类囊体薄膜上,水光解成为还原氢和氧气,ADP与Pi吸收能量结合生成ATP。
第二阶段:在叶绿体基质中,C₅结合CO₂生成两分子C₃。
第三阶段:在叶绿体基质中,ATP水解为ADP与Pi释放能量,C₃吸收能量并结合第一阶段中水生成的还原氢,生成糖类和C₅。
光反应阶段的特征是在光驱动下水分子氧化释放的电子通过类似于线粒体呼吸电子传递链那样的电子传递系统传递给NADP+,使它还原为NADPH。电子传递的另一结果是基质中质子被泵送到类囊体腔中,形成的跨膜质子梯度驱动ADP磷酸化生成ATP。
暗反应阶段是利用光反应生成NADPH和ATP进行碳的同化作用,使气体二氧化碳还原为糖。由于这阶段基本上不直接依赖于光,而只是依赖于NADPH和NADPH的提供。
扩展资料:
光合作用第二个阶段中的化学反应,没有光能也可以进行,这个阶段叫做暗反应阶段。暗反应阶段中的化学反应是在叶绿体内的基质中进行的。光反应阶段和暗反应阶段是一个整体,在光合作用的过程中,二者是紧密联系、缺一不可的。
光合作用为包括人类在内的几乎所有生物的生存提供了物质来源和能量来源。因此,光合作用对于人类和整个生物界都具有非常重要的意义。
当特殊叶绿素a对(P)被光激发后成为激发态P*,放出电子给原初电子受体(A)。叶绿素a被氧化成带正电荷(P+)的氧化态,而受体被还原成带负电荷的还原态(A-)。氧化态的叶绿素(P+)在失去电子后又可从次级电子供体(D)得到电子而恢复电子的还原态。
这样不断地氧化还原,原初电子受体将高能电子释放进入电子传递链,直至最终电子受体NADP+。同样,氧化态的电子供体(D+)也要想前面的供体夺取电子,一次直到最终的电子供体水。
参考资料来源:百度百科——光合作用
热心网友
时间:2024-04-04 06:17
光合作用只有两个阶段
光合作用可分为光反应和碳反应(旧称暗反应)两个阶段
光反应
条件:光照、光合色素、光反应酶。 场所:叶绿体的类囊体薄膜。(色素) 光合作用的反应: (原料) 光 (产物) 水+二氧化碳-----------→有机物(主要是淀粉) + 氧气( 光和叶绿体是条件) 叶绿体 过程:①水的光解:2H2O→4[H]+O2(在光和叶绿体中的色素的催化下)。 ②ATP的合成:ADP+Pi+能量→ATP(在光、酶和叶绿体中的色素的催化下)。 影响因素:光照强度、CO2浓度、水分供给、温度、酸碱度、矿质元素等。 意义:①光解水,产生氧气。 ②将光能转变成化学能,产生ATP,为碳反应提供能量。 ③利用水光解的产物氢离子,合成NADPH(还原型辅酶Ⅱ),为碳反应提供还原剂NADPH(还原型辅酶Ⅱ),NADPH(还原型辅酶Ⅱ可以为碳反应提供原料。
碳反应
碳反应的实质是一系列的酶促反应。原称暗反应,后随着研究的深入,科学家发现这一概念并不准确。因为所谓的暗反应在暗中只能进行极短的时间,而在有光的条件下能连续不断进行,并受到光的调节。所以在20世纪90年代的一次光合作用会议上,从事植物生理学研究的科学家一致同意,将暗反应改称为碳反应。 条件:碳反应酶。 场所:叶绿体基质。 影响因素:温度、CO2浓度、酸碱度等。 光照下的绿色植物
过程:不同的植物,碳反应的过程不一样,而且叶片的解剖结构也不相同。这是植物对环境的适应的结果。碳反应可分为C3、C4和CAM三种类型。三种类型是因二氧化碳的固定这一过程的不同而划分的。对于最常见的C3的反应类型,植物通过气孔将CO2由外界吸入细胞内,通过自由扩散进入叶绿体。叶绿体中含有C5。起到将CO2固定成为C3的作用。C3再与NADPH在ATP供能的条件下反应,生成糖类(CH2O)并还原出C5。被还原出的C5继续参与碳反应。 光合作用的实质是把CO2和H2O转变为有机物(物质变化)和把光能转变成ATP中活跃的化学能再转变成有机物中的稳定的化学能(能量变化)。 CO2+H2O( 光照、酶、 叶绿体)==(CH2O)+O2 (CH2O)表示糖类(叶绿体相当于催化剂[1])
如有疑问请追问 如满意请及时采纳 谢谢
热心网友
时间:2024-04-04 06:17
第一阶段:在类囊体薄膜上,水光解成为还原氢和氧气,ADP与Pi吸收能量结合生成ATP;
第二阶段:在叶绿体基质中,C5结合CO2生成两分子C3;
第三阶段:在叶绿体基质中,ATP水解为ADP与Pi释放能量,C3吸收能量并结合第一阶段中水生成的还原氢,生成糖类和C5。
热心网友
时间:2024-04-04 06:13
光反应阶段 光合作用第一个阶段中的化学反应,必须有光能才能进行,这个阶段叫做光反应阶段。光反应阶段的化学反应是在叶绿体内的囊状结构薄膜上进行的。
在光反应阶段中,叶绿体中的色素吸收光能,这些光能有两方面的用途:一方面是将水分子分解成氧和氢[H],氧直接以分子的形式释放出去,而氢[H]则被传递到叶绿体内的基质中,作为活泼的还原剂,参与到第二个阶段中的化学反应中去;另一方面是在有关酶的催化作用下,促成ADP与Pi发生化学反应,形成ATP。这里,光能转变为化学能并且储存在ATP中。这些ATP将参与到第二个阶段中的化学反应中去。
暗反应阶段 光合作用第二个阶段中的化学反应,没有光能也可以进行,这个阶段叫做暗反应阶段。暗反应阶段中的化学反应是在叶绿体内的基质中进行的。
在暗反应阶段中,绿叶从外界吸收来的二氧化碳,不能直接被氢[H]还原。它必须首先与植物体内的一种含有五个碳原子的化合物(简称五碳化合物,用C5表示)结合,这个过程叫做二氧化碳的固定。一个二氧化碳分子被一个五碳化合物分子固定以后,很快形成两个含有三个碳原子的化合物(简称三碳化合物,用C3表示)。在有关酶的催化作用下,三碳化合物接受ATP释放出的能量并且被氢[H]还原。其中,一些三碳化合物经过一系列变化,形成糖类;另一些三碳化合物则经过复杂的变化,又形成五碳化合物,从而使暗反应阶段的化学反应循环往复地进行下去。