在平面直角坐标系中,111
发布网友
发布时间:2023-11-01 12:16
我来回答
共5个回答
热心网友
时间:2024-11-24 20:12
平面直角坐标系2007-07-27 22:22一、一周知识概述
1、有序实数对
有顺序的两个数a与b组成的数对,叫有序实数对,记作(a,b).利用数对可以准确地表示出一个位置.
2、常见的确定平面上的点位置常用的方法
(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置.
(2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置.
3、平面直角坐标系的定义
在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系,水平的数轴叫做x轴或横轴,铅垂的数轴叫y轴或纵轴,两数轴的交点O称为原点.
4、平面直角坐标系的结构
x轴和y轴把坐标平面分成四个部分,称之为四个象限,按逆时针顺序依次叫第一象限,第二象限,第三象限,第四象限.如图,坐标轴不属于任何象限.
5、点的坐标
在平面内一点P,过P向x轴、y轴分别作垂线,垂足在x轴、y轴上对应的数a,b分别叫P点的横坐标和纵坐标,则有序实数对(a,b)叫做P点的坐标.
6、坐标平面内的点P(a,b)的坐标特征:
象限
内的
点
点P在第一象限
a>0,b>0
点P在第二象限
a<0,b>0
点P在第三象限
a<0,b<0
点P在第四象限
a>0,b<0
坐标
轴上
的点
点P在x轴上:y=0,x为一切实数
点P在x轴正半轴上:a>0,b=0
点P在x轴负半轴上:a<0,b=0
点P在y轴上:x=0,y为一切实数
点P在y轴正半轴上:b>0,a=0
点P在y轴负半轴上:b<0,a=0
7、坐标平面上对称点的坐标特征
(1)关于x轴对称的两点的横坐标相同,纵坐标互为相反数;
(2)关于y轴对称的两点的纵坐标相同,横坐标互为相反数;
(3)关于原点对称的两点的横、纵坐标都互为相反数.
8、两坐标轴夹角的平分线上的点的坐标的特征
(1)第一、第三象限两坐标轴夹角的平分线上的点的横、纵坐标相等;
(2)第二、四象限两坐标轴夹角的平分线上的点的横、纵坐标互为相反数,一般记作(a,-a).
坐标平面内的点和有序数对是一一对应的.
二、重难点知识归纳
1、有序实数对的定义
2、常见的确定平面上的点的位置常用的方法.
3、平面直角坐标系的概念.
4、点的坐标的意义.
5、两条坐标轴夹角平分线上的点的坐标的特征.
三、典型例题剖析
例1、如图, 表示三经路与一纬路的十字路口, 表示一经路与三纬路的十字路口,如果用(3,1)→(3,2)→(3,3)→(2,3)→(1,3)表示由到的一条路径,用同样的方式写出另外一条由到的路径:(3,1)→(______)→(______)→(______)→(1,3).
分析:
用数对表示路口的位置,前一个数表示南北向所在的第几个经路,后一个数表示东西向所在的第几纬路.
答案:
2,1;2,2;2,3(答案不惟一)
例2、如图是某次海战中敌我双方舰艇对峙示意图,对我方舰艇来说:
(1)北偏东方向上有哪些目标?要想确定敌舰B的位置,还需要什么数据?
(2)距我方潜艇图上距离为1cm处的敌舰有哪几艘?
(3)要确定每艘敌舰的位置,各需要几个数据?
分析:
本题以潜艇为观察点,确定敌舰的位置都是相对于我方潜艇而言的.
解:
(1)如图,对我方潜艇来说,北偏东40°的方向上有两个目标:敌舰B和小岛.
要想确定敌舰B的位置,仅用北偏东40°的方向是不够的,还需知道敌舰B距我方潜艇的距离.
(2)距我方潜艇图上距离1cm处的敌舰有两艘:敌舰A和敌舰C.
(3)要确定每艘敌舰的位置,各需要两个数据:距离和方位.如对我方潜艇来说,敌舰A在正南方向,图上距离为1cm处;敌舰B在北偏东40°,图上距离为1.4cm处;敌舰C在正东方向,图上距离为1cm处.
例3、在直角坐标系中描出下列各点(-5,2)、(-4.5,-2)、(-3,-3)、(0,0)、(3.5,1)、(6,0),并将所得的点用线段顺次连结起来.观察所得的图形,你觉得它象什么?如果是一个星座的美丽图案,请指出其名称.
分析:
先在x轴上找出表示横坐标a的点,再在y轴上找出表示纵坐标b的点,过这两个点分别作x轴和y轴的垂线,垂线的交点就是点(a,b).
答案:如图,象勺子,北斗七星.
例4、(1)若点(5-a,a-3)在第一、三象限角平分线上,求a的值.
(2)已知两点A(-3,m),B(n,4).若AB‖x轴,求m的值,并确定n的范围.
(3)点P到x轴和y轴的距离分别是3和4,求点P的坐标.
分析:
(1)中在一、三象限夹角平分线上的点的横坐标与纵坐标相等;
(2)与x轴平行的直线上的点的纵坐标相等;
(3)中的P点有多个.
解:
(1)因为点(5-a,a-3)在第一、三象限角的平分线上,所以5-a=a-3,所以a=4;
(2)因为AB‖x轴,所以m=4,因为A、B两点不重合,所以n≠-3;
(3)设点P的坐标为(x,y),由已知条件,得|y|=3,|x|=4,所以y=±3,x=±4.
所以P点坐标为(4,3)或(-4,3)或(4,-3)或(-4,-3).
例5、已知点A(a-1,-2),B(-3,b+1),根据以下要求确定a、b的值.
(1)直线AB‖y轴;
(2)直线AB‖x轴;
(3)A、B两点在第二、四象限两条坐标轴夹角的平分线上.
分析:
(1)两点连线平行y轴,这两点的横坐标相同,但纵坐标不相同;
(2)两点连线平行x轴,这两点的纵坐标相同,但横坐标不相同;
(3)当两点位于第二、四象限两坐标轴夹角的平分线上时,每个点的纵、横坐标都互为相反数.
解:
(1)∵直线AB‖y轴,∴a-1=-3,b+1≠-2,
即a=-2,b≠-3.当a=-2且b≠-3时,直线AB‖y轴.
(2)∵直线AB‖x轴,∴b+1=-2,a-1≠3,即b=-3,a≠-2.
当b=-3且a≠-2时,直线AB‖x轴.
(3)∵ 点A(a-1,-2),B(-3,b+1)在第二、四象限两坐标轴夹角的平分线上,
则点M(x,y)中x+y=0.
即
当a=3,b=2时,A、B两点位于第二、四象限两坐标轴夹角的平分线上.
热心网友
时间:2024-11-24 20:13
作D∈BC,CD∶CB=1∶√2.设D(a,b)
(a+4)/8=1/√2.a=4(√2-1).
(b-1)/-2=1/√2.b=-(√2-1).D(4(√2-1).-(√2-1)).
AB斜率=-2.过D作直线DE‖AB.E∈AC.
DE的方程:y+(√2-1)=-2(x-4(√2-1)).
即y+2x-3(√2-1)=0.
热心网友
时间:2024-11-24 20:13
设D点坐标是
(x,y)
有三种可能
(1)
点D与点A是相对的顶点,则A,D的中点就是BC的中点,于是得方程组:
(x-2)/2=(-4+2)/2
(y+3)/2=(-1+0)/2
解得
x=0,
y=-4
(2)
点D与点B是相对的顶点,则
BD的中点就是AC的中点,所以得方程组:
(-4+x)/2=(-2+2)/2
(y-1)/2=(3+0)/2
解得:
x=4,
y=4
(3)
点D与点C是相对的顶点,则DC的中点就是AB的中点,于是得方程组:
(x+2)/2=(-2-4)/2
(y+0)/2=(3-1)/2
解得
:
x=-8,
y=2
所以D的坐标有三种情况:
(0,-4)或(4,4),或(
-8,2)
热心网友
时间:2024-11-24 20:14
见下图。A、B、C 有3个点,所以对应的D有3个点;坐标为 D1(4,4),D2(-8,2),D3(0,-4);
热心网友
时间:2024-11-24 20:15
解:(1)C关于直线OB对称,AB=BC
∵
OB⊥AB,OB=√3,OA=2
∴
AB=1=OA/2
∴
∠AOB=30°,∠OAB=60°,又AC=2=OA
∴
△OAC是
等边三角形
∵
OD=2OA=4,A是OD的中点,AD=2
作PE⊥OA于E,则OE=OP/2=(2-X)/2
PE=OP*√3/2,DE=4-OE=4-1+X/2=3+X/2
∵
Rt△DPE∽Rt△DAM,则
AM:PE=AD:PD,AM=PE*AD/PD
Y=0.5*AM*PD=0.5*PE*AD=(2-X)√3/2=√3-X√3/2
若
二次函数
Y=-2X^2-(7K-3√3)X+√3K的图像关于Y
轴对称
,即:K=3√3/7
当X=1/2时,PC=1/2,OP=3/2,OE=3/4,PE=3√3/4,DE=4-OE=4-3/4=13/4,PD^2=PE^2+DE^2
PD^2=(169+27)/16=196/16,PD=7/2,AM=PE*AD/PD,K=
7AM
/2PD=7PE*AD/2PD^2=7PE/PD^2
=(7*3√3/4)*(16/196)=3√3/7,将7K=3√3代入二次函数得:Y=-2X^2+9/7,
即,Y-9/7=-2X^2,该二次函数关于X=0对称,显然也关于Y轴对称。