数据分析师常用的思维分析方式是什么?
发布网友
发布时间:2022-04-21 09:05
我来回答
共2个回答
热心网友
时间:2023-06-25 12:05
1. 对比思维
对比这两个字大家肯定都不陌生,比如买东西我们会货比三家,其实生活中处处有对比。
比如说,小芳一直成绩优异,但是末次考试发挥失常,数学只考了40分,班主任找到小芳谈话,问她说:“你最近怎么回事,上次你数学考了80分,全班前十,这次怎么考的这么差?你看看你的同桌,这次都考了73分。”
从这个小故事中可以看出,对比一般有两种方式,横向对比和纵向对比。横向对比也就是与同类对比,比如班主任拿小芳的成绩跟她同桌的成绩做对比。纵向对比是指同一类型不同时间的对比,比如班主任拿小芳这次的成绩和上次的成绩做对比。
2. 细分思维
细分思维很多人可能乍一听不太明白,其实生活中很多小事都体现了细分思维。就比如我们人体是由九大系统构成的,系统又是由器官构成的,器官是由组织构成的、细胞又构成了组织,层层细分。
再拿刚刚的例子来说,还是我们的小芳同学,还是刚刚那场考试,班主任让小芳对自己这考试的总成绩做一个总结,小芳拿着成绩单仔细研究,发现这次总成绩不是很好,但是仔细一看,发现除了数学成绩只考了40分以外,其他科目的成绩都名列前茅,数学成绩拉低了小芳的整体成绩。
在这里我们就是把整体考试成绩细分为具体的科目来总结归因。在数据分析的工作中,细分的纬度主要包括时间、地区、渠道、产品、员工、客户等。杜邦分析法、麦肯锡的 MECE 分析法本质上都属于细分思维。
3. 溯源思维
前两个思维能够对应一部分数据分析工作要求,但是如果有一些数据不能用前两种思维来处理怎么办呢?
那我们就可以用到另一种溯源思维。俗话说追根溯源,很多时候我们要想知道事物背后的逻辑原因,最好的方法可能是去探究事物发生的原因,来帮助我们分析。
继续拿小芳举例,她放学回家把成绩单交给妈妈,妈妈通过对比、细分的思维方法知道了小芳这次考试的大概情况,也知道是数学失利了。但是小芳的数学一向是强项,妈妈还是无法理解为什么会在这里出问题,于是妈妈找来小芳谈心,详细了解了考试时的情况,才发现是因为小芳考数学的那天中午吃坏了肚子,下午的数学考试刚好发作,疼痛难忍,以至于很多本来会做的题目都做错了。妈妈也理解了小芳,并且向小芳表达了歉意,也会更注重小芳的饮食问题。
上面的例子里,小芳的妈妈无法从表面的数据上分析出事情发生的原因,于是采用了溯源思维,找到了真正的原因。如果数据分析师在工作中也能利用好溯源思维,那么对数据的敏感和业务的理解也能逐步加深。
4. 相关思维
上面几种思维是比较常用的思维方式,下面我们就来说说相关思维,这也是数据分析的核心思维能力。
很多人可能都知道著名的啤酒与尿布的故事,在业界是一个相关分析的经典案例。故事背景是20世纪90年代的美国沃尔玛超市,当时沃尔玛拥有世界上最大的数据仓库系统,为了能够准确了解顾客在其门店的购买习惯,沃尔玛对其顾客的购物行为进行购物篮分析,想知道顾客经常一起购买的商品有哪些。
沃尔玛数据仓库里集中了其各门店的详细原始交易数据。在这些原始交易数据的基础上,沃尔玛利用数据挖掘方法对这些数据进行分析和挖掘。一个意外的发现是:跟尿布一起购买最多的商品竟是啤酒。
经过大量实际调查和分析,揭示了一个隐藏在“尿布与啤酒”后的美国人的一种行为模式:在美国,一些年轻的父亲下班后经常要到超市去买婴儿尿布,而他们中有30%~40%的人同时也为自己买一些啤酒。产生这一现象的原因是:美国的妻子们常叮嘱她们的丈夫下班后为小孩买尿布,而丈夫们在买尿布后又随手带回了他们喜欢的啤酒。
如果数据分析师能够熟练灵活的将相关分析运用到工作中,就能从仅仅知道数据分析的结果是什么进阶到知道呈现这个结果的原因是为什么。
5. 假设思维
之前的思维模式都是建立在我们有大量的已知数据可以进行分析论证的时候,那么如果我们还没有足够的数据量或者证据来验证这件事,我们应该怎么办呢?这种时候就可以用到我们的假设思维。先对大胆进行假设,然后再小心求证,最后去想办法验证假设是否成立。
比如,小芳想吃荔枝,于是下楼去买,跟卖荔枝的阿姨之间有这样一段对话:
小芳:“阿姨,你这荔枝甜不甜?”
阿姨:“甜啊,我这有切好的,你先尝一尝试试。”
小芳:“好,那我尝一个。”
小芳拿来一个荔枝,尝了一口:“嗯,不错,确实挺甜的,给我称两斤吧。”
上面这个看似简单的小故事,其实就隐藏了简单的假设检验。首先,小芳提出假设:荔枝是甜的;其次,随机抽取一个样本;然后,检验是否是甜的;最后,作出判断,确认荔枝真的是甜的,所以就购买了。
在数据分析中,假设思维的专业术语叫假设检验,一般包括四个步骤,即:提出假设、抽取样本、检验假设、作出判断。数据分析师可以充分利用这一思维模式。
6. 逆向思维
逆向思维这个词大家一定都不陌生,很多著名企业家的演讲中就常常提到这个词,他们都提倡打破常规的思维模式,从相反的方向来思考问题。
下面我们邀请小芳同学再次登场。
有一次,小芳去买辣椒,跟阿姨之间又有一段对话。
小芳:“阿姨,你这辣椒多少钱一斤?”
阿姨:“一块五。”
小芳挑了 3 个放到秤盘:“阿姨,帮我称一下。”
阿姨:“一斤半,两 块 2 毛。”
小芳去掉其中最大的辣椒:“做汤不用那么多。”
摊主:“一斤二两,一块6毛。”
小芳拿起刚刚去掉的那个最大的辣椒,付了 6毛钱,笑着跟阿姨说了再见。
你看,运用逆向思维,有时可能会起到意想不到的效果。
7. 演绎思维
演绎思维相对于前面的几种思维方式可能不是那么好理解。
演绎思维的方向是由一般到个别,大家要记住这一点,后面我们还会提到。也就是说,演绎的前提是一般性的抽象知识,而结论是个别性的具体知识。演绎的主要形式是由大前提、小前提、结论三部分组成的三段论。
以物理学上一个常识为例。
大前提:金属能导电。
小前提:银铁是金属。
结论:银能导电。
从这个例子中可以看出,大前提是已知的一般原理(金属能导电),小前提是研究的特殊场合(铁是金属),结论是将特殊场合归到一般原理之下得出的新知识(银能导电)。
8. 归纳思维
归纳思维的方向与演绎正好相反,归纳的过程是从个别到一般。
还是以金属能导电为例。
前提:金能导电,银能导电,铜能导电,铝能导电。
结论:金属能导电。
数据分析的过程,往往是先接触到个别事物,而后进行归纳总结,推及一般,再进行演绎推理,从一般推及个别,如此循环往复,不断积累经验。
总结
本文总结了数据分析的 8 种思维,分别是对比、细分、溯源、相关、假设、逆向、演绎、归纳。作为一名数据分析师,如果在工作中能充分运用好这些思维,是对个人能力极大地提升,就能够在工作中创造更多的个人价值。
热心网友
时间:2023-06-25 12:06
一、对比思维
对比法就是用两组或两组以上的数据进行比较,是最通用的方法。我们知道孤立的数据没有意义,有对比才有差异。一些直接描述事物的变量,如长度、数量、高度、宽度等,通过对比得到比率数据,增速、效率、效益等指标,这才是数据分析时常用的。比如:用于在时间维度上的同比和环比、增长率、定基比,与竞争对手的对比、类别之间的对比、特征和属性对比等。
二、象限思维
通过对两种及以上维度的划分,运用坐标的方式表达出想要的价值。由价值直接转变为策略,从而进行一些落地的推动。象限法是一种策略驱动的思维,常于产品分析、市场分析、客户管理、商品管理等。比如:下图是一个广告点击的四象限分布,X轴从左到右表示从低到高,Y轴从下到上表示从低到高。
三、二八法/帕累托分析思维
二八法也可以叫帕累托法则,源于经典的二八法则。比如在个人财富上可以说世界上20%的人掌握着80%的财富。而在数据分析中,则可以理解为20%的数据产生了80%的效果需要围绕这20%的数据进行挖掘。
往往在使用二八法则的时候和排名有关系,排在前20%的才算是有效数据。二八法是抓重点分析,适用于任何行业;找到重点,发现其特征,然后可以思考如何让其余的80%向这20%转化,提高效果。
四、漏斗思维
漏斗法即是漏斗图,有点像倒金字塔,是一个流程化的思考方式,常用于像新用户的开发、购物转化率这些有变化和一定流程的分析中。
关于数据分析师常用的思维分析方式是什么,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。