好像好是一个物理的表达式。。忘了。。高等物理学里面找找看。。。
是数学,三角函数,C.A.B.D是系数,那个符号是角度。这只不过是把它用子母表示罢了。
e^iθ=cosθ+isinθ
z2=c+di 同样利用乘积的模等于模的乘积,有 (a^2+b^2)(c^2+d^2)=(ac-bd)^2+(bc+ad)^2 该恒等式能反映出的一个事实是,两个形如 x^2+y^2 的数的乘积,也能表示成类似的平方和,这在数论里有一定意义,详细可见 “费马平方和问题”。
测色仪L、a、b、c、h分别代表什么意思啊
测色仪L、a、b、c、h的意思,L代表明暗度(黑白),a代表红绿色,b代表黄蓝色,c表示彩度(色彩饱和的程度或纯粹度),h表示色调角。测色仪,广泛应用于塑胶、印刷、油漆油墨、纺织、印染服装等行业的颜色管理领域,根据CIE色空间的Lab,Lch原理...
三角函数所有的公式
sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2];sinα-sinβ=2cos[(α+β)/2]·
同角三角函数关系有哪些?
[1] 根据右图,有 sinθ=y/ r; cosθ=x/r; tanθ=y/x; cotθ=x/y。 深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来,比如以推导 sin(A+B) = sinAcosB+cosAsinB 为例: 推导: 首先画单位圆交X轴于C,D,在单位圆上有任意A,B点。角AOD为α,BOD为β,旋转AOB使OB与OD重合,形成新A...
高中三角函数的所有公式
sinθ=y/ R; cosθ=x/R; tanθ=y/x; cotθ=x/y。深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来,比如以推导 sin(A+B) = sinAcosB+cosAsinB 为例:推导:首先画单位圆交X轴于C,D,在单位圆上有任意A,B点。角AOD为α,BOD为β,旋转AOB使OB与OD重合,形成新A'OD。
求关于三角函数代换公式,越详细越好。
④化弦(切)法。将三角函数利用同角三角函数基本关系化成弦(切)。⑤引入辅助角。三角函数会经常看到这样的公式asinθ+bcosθ= sin(θ+ ),这里辅助角 所在象限由a、b的符号确定, 角的值由tan = 确定。http://wenku.baidu.com/view/d7b3c024e2bd960590c6776c.html ...
三角函数的理论???要全部的 ,急
sinθ=y/ R; cosθ=x/R; tanθ=y/x; cotθ=x/y。 深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来,比如以推导 sin(A+B) = sinAcosB+cosAsinB 为例: 推导: 首先画单位圆交X轴于C,D,在单位圆上有任意A,B点。角AOD为α,BOD为β,旋转AOB使OB与OD重合,形成新A'OD。 A(cosα,...
所有三角函数变换公式
正弦函数 sinθ=y/r 余弦函数 cosθ=x/r 正切函数 tanθ=y/x 余切函数 cotθ=x/y 正割函数 secθ=r/x 余割函数 cscθ=r/y 以及两个不常用,已趋于被淘汰的函数:正矢函数 versinθ =1-cosθ 余矢函数 vercosθ =1-sinθ 同角三角函数间的基本关系式:·平方关系:sin^2(α)+cos^...
正余玄定理
在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H CH=a·sinBCH=b·sinA∴a·sinB=b·sinA 得到同理,在△ABC中,步骤2证明:如图1,任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA.因为在同圆或等圆中直径所对的圆周角是直角,所以∠DAB=90度因为在同圆或等圆中同弧所...
求高中数学公式大全,符号要清晰
即 x = sec yacsc x y,余割函数反函数在x处的值,即 x = csc yθ 角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时i, j, k 分别表示x、y、z方向上的单位向量(a, b, c) 以a、b、c为元素的向量(a, b) 以a、b为元素的向量(a, b) a、b向量的...
正余弦定理基本公式
正余弦定理基本公式:a/sinA=b/sinB=c/sinC=2R 用途:(1)已知三角形的两角与一边,解三角形。(2)已知三角形的两边和其中一边所对的角,解三角形。(3)运用a:b:c=sinA:sinB:sinC解决角之间的转换关系。直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦。