发布网友 发布时间:2024-07-04 00:17
共1个回答
热心网友 时间:2024-07-04 11:57
抛物线y^2=2px (p>0),C(Xo,Yo)为抛物线上的一点,焦半径|CF|=Xo+p/2。
焦半径r=x+p/2 (其中x为在抛物线上的横坐标,p为焦准距) (利用抛物线第二定义求),至于抛物线开口方向为其他三个方向时,利用抛物线第二定义求同理可求。如果焦点不在坐标轴上,只需要将x进行相应平移即可,p不变。
特点:
在抛物线y^2=2px中,焦点是(p/2,0),准线的方程是x= -p/2,离心率e=1,范围:x≥0。
在抛物线y^2= -2px 中,焦点是( -p/2,0),准线的方程是x=p/2,离心率e=1,范围:x≤0。
在抛物线x^2=2py 中,焦点是(0,p/2),准线的方程是y= -p/2,离心率e=1,范围:y≥0。
在抛物线x^2= -2py中,焦点是(0,-p/2),准线的方程是y=p/2,离心率e=1,范围:y≤0。