已知abcd是两两相交且不共点的四条直线,求证abcd共面·
发布网友
发布时间:2024-05-14 04:51
我来回答
共1个回答
热心网友
时间:2024-06-02 08:44
情况一:
当三条直线两两相交任意三条直线都不交于同一点时:
由abc三条直线两两相交可得abc共面,(ab相交可得ab共面,ac相交可得ac共面,bc也相交则bc共面,显然abc共面)
同理可证bcd共面,
即可知abcd四条直线共面。
情况二:
当三条直线两两相交存在三条直线交于同一点时(不妨设abc相交于同一点)(由题可知d不过abc的交点)
此时若abc相交于同一点且abc三条直线共面,则可由情况一同理可得。
此时若abc相交于同一点且abc三条直线不共面,由题可得d必须于abc均有交点且交点异于abc的交点,在abc上分别取三个点(均异于abc交点),显然三点共面而不共线,欲使d过此三点,此三点必共线,与之前所证矛盾,故可得此时abcd不满足题意,情况不成立。
综上所述:abcd四线共面。