发布网友 发布时间:2024-05-01 12:26
共3个回答
热心网友 时间:2024-05-17 18:02
所谓的AIOps,简单理解就是基于自动化运维,将AI和运维很好的结合起来。
AIOps的落地在多方面直击传统运维的痛点,AI算法承担起分析海量运维数据的重任,能够自动、准确地发现和定位问题,从决策层面提高运营效率,为企业运营和运维工作在成本、质量和效率方面的优化提供了重要支持。
可见,AIOps 在企业中的作用正在进一步放大。但事实上,很多企业对于AIOps 能解决什么问题并不清晰,今天我们就以博睿数据的AIOps 的三大场景和算法说起。
博睿数据的AIOps 实践
作为中国领先的智能可观测平台,在AIOps实践方面,多年来博睿数据积极拥抱人工智能、机器学习等新技术变革的浪潮,并基于AI和机器学习技术,自主研发了“数据接入、处理、存储与分析技术”核心技术体系,全面布局智能基线、异常检测、智能告警、关联分析、根因分析等丰富且广泛的智能运维功能,并将AIOps能力融入端到端全栈监控产品线,可为传统企业提供强大的数据处理、存储和分析的软件工具,帮助客户整合各类IT运维监控数据,实现数据的统一存储和关联分析,打破数据孤岛,构建统一的IT运维管理平台,让企业的IT运维更加智能化、自动化。
在此基础上,博睿数据还依托完整的IT运维监控能力,利用大数据和机器学习技术持续构建先进的智能运维监控产品,2021年先后推出了搭载了AI能力的新一代APM产品Server7.0和新版的统一智能运维平台Dataview,不断落地智能异常检测、根因分析、故障预测等场景。基于人工智能的能力实现运维监控场景的信息整合、特征关联和业务洞察,帮助企业确保数字化业务平稳运行,并保障良好的数字化体验。
目前,博睿数据在AIOps 技术方面主要落地了三大场景。即智能基线预测、异常检测及告警收敛。
随着企业业务规模扩大,云原生与微服务的兴起,企业IT架构复杂性呈现指数级增长。而传统的IT运维手段面临故障发生后,查找故障原因困难,故障平均修复时间周期长,已无法满足新的运维要求。因此运用人工智能赋能运维,去取代缓慢易错的人力决策,快速给出运维决策建议,降低问题的影响并提前预警问题就成为了必然。AIOps作为目前运维发展的最高阶目标,未来将会赋能运维带给用户全新的体验。
但需要注意的是,当前智能运维的很多产品和项目在企业侧落地效果并不理想,究其原因可归类为三点:一是数据采集与AI平台割裂,多源数据之间的关联关系缺失导致AI平台缺乏高质量的数据,进而导致模型训练效果不佳;二是数据采集以metric和log为主,导致应用场景较窄且存在数据孤岛问题;三是AI平台能力尚有提升空间。当前落地的场景多以异常检测与智能告警为主,未来需要进一步提升根因分析与故障预测的能力。
因此,未来企业首先要建设一体化监控运维平台,一体化是智能化的基础。基于一体化监控运维平台采集的高质量的可观测数据数据以及数据之间的关联关系,进一步将AIOps的能力落地到一体化监控运维平台中,从而实现问题精准定位与见解能力。
此外,在实际应用中,依据信通院的相关调查,其受访企业中只有不足20%的企业具有智能化监控和运维决策能力,超过70%的企业在应用系统出现故障的10分钟内一筹莫展。
各行业的数字化转型正在改变这一现状,不仅互联网企业,更多传统企业的数字化转型为智能运维开拓了更广阔的市场,智能运维有着巨大的发展空间,这也是博睿数据等行业领先企业发力的大好时机。
提升创新能力,推广智能运维不仅是相关服务商自身发展的要求,也是提升我国企业应用管理和运维水平的使命。
中国企业数字化转型加速,无论是前端的应用服务迭代更新,还是后端IT运维架构的复杂度提升,都在加速培育智能运维的成长。
热心网友 时间:2024-05-17 18:03
随着人工智能时代的到来,IT技术的重要性也越来越突出,运维也进入了新的运维时代,即AIOps。通过近几年的技术投入和实践,AIOps在效率提升、可用性保障、成本优化等运维场景中都取得了显著的成果。对比于传统运维工具,AIOps的优势非常明显:传统运维工具的指标采集维度过于单一,在判断故障时,会通过非常多的运维指标进行排查,这样会造成时间的浪费,对于传统运维数据更多的是依靠专家经验判断;而AIOps可以通过底层的大数据平台进行分析,通过AI技术的充分学习判断,对告警进行直接的溯源、降噪,第一时间对运维人员展示故障的根本原因及定位,大大提高了工作效率和处理故障的时间。AIOps的优势还有很多,具体的优势和功能你可以去咨询专业的公司,比如国内国内现行从事应用性能管理(APM)和用户体验优化的第三方加测服务提供商-听云,业务现已覆盖*、金融、运营商、互联网、航空、能源电力、工业制造、教育等各大行业 ,为数千家知名企业提供服务,赢得广泛信赖与认可。热心网友 时间:2024-05-17 18:03
智能运维是一种全新的数字化运维能力,也将是数字化转型的必备能力。智能运维相对于传统运维模式而言,能够在四个方面有本质的效能提升:
运维数据治理。通过高性能实时处理的数据平台广泛采集、处理和分析数字化业务运行过程中的多样化运维数据,包括告警、指标、日志、配置以及运维工单等类别,不仅提升了运维大数据的治理能力,优化了数据质量,而且为进一步激活运维数据的价值打下了良好基础;
业务数字化风险。使运维人员不仅提升了历史运维数据的分析能力并且能够对实时数据进行异常检测和问题预判,有效降低数字化业务的运行风险,提升可用性、稳定性;
运维人力成本。使真正意义上的跨域根因定位成为可能,降低对专业运维人员经验技能的依赖,迅速缩短故障排查时间并有效降低人力成本;
业务侧影响力。以业务视角利用多元化数据提高运营分析和决策能力,比如端到端的分析业务交易状态,提供给业务、客服部门及时反馈和决策支持依据,充分增强业务影响力;
由此可以看出,基于 AIOps 的管理方法对监控式运维的底层技术实现了*。传统 IT 运维管理工具更为关注突发事件(即告警)、配置和性能,而 AIOps 则更加关注问题、分析和预测,二者可谓互相补充相得益彰。