问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

常用的机器学习&数据挖掘知识点

发布网友 发布时间:2024-05-06 12:32

我来回答

1个回答

热心网友 时间:2024-05-29 06:18

常用的机器学习&数据挖掘知识点
Basis(基础):
MSE(Mean Square Error 均方误差),LMS(LeastMean Square 最小均方),LSM(Least Square Methods 最小二乘法),MLE(MaximumLikelihood Estimation最大似然估计),QP(Quadratic Programming 二次规划), CP(Conditional Probability条件概率),JP(Joint Probability 联合概率),MP(Marginal Probability边缘概率),Bayesian Formula(贝叶斯公式),L1 /L2Regularization(L1/L2正则,以及更多的,现在比较火的L2.5正则等),GD(GradientDescent 梯度下降),SGD(Stochastic Gradient Descent 随机梯度下降),Eigenvalue(特征值),Eigenvector(特征向量),QR-decomposition(QR分解),Quantile (分位数),Covariance(协方差矩阵)。
Common Distribution(常见分布):
Discrete Distribution(离散型分布):BernoulliDistribution/Binomial(贝努利分布/二项分布),Negative BinomialDistribution(负二项分布),MultinomialDistribution(多项式分布),Geometric Distribution(几何分布),HypergeometricDistribution(超几何分布),Poisson Distribution (泊松分布)
Continuous Distribution (连续型分布):UniformDistribution(均匀分布),Normal Distribution /Guassian Distribution(正态分布/高斯分布),ExponentialDistribution(指数分布),Lognormal Distribution(对数正态分布),GammaDistribution(Gamma分布),Beta Distribution(Beta分布),Dirichlet Distribution(狄利克雷分布),Rayleigh Distribution(瑞利分布),Cauchy Distribution(柯西分布),Weibull Distribution (韦伯分布)
Three Sampling Distribution(三大抽样分布):Chi-squareDistribution(卡方分布),t-distribution(t-distribution),F-distribution(F-分布)
Data Pre-processing(数据预处理):
Missing Value Imputation(缺失值填充),Discretization(离散化),Mapping(映射),Normalization(归一化/标准化)。
Sampling(采样):
Simple Random Sampling(简单随机采样),OfflineSampling(离线等可能K采样),Online Sampling(在线等可能K采样),Ratio-based Sampling(等比例随机采样),Acceptance-RejectionSampling(接受-拒绝采样),Importance Sampling(重要性采样),MCMC(MarkovChain Monte Carlo 马尔科夫蒙特卡罗采样算法:Metropolis-Hasting& Gibbs)。
Clustering(聚类):
K-Means,K-Mediods,二分K-Means,FK-Means,Canopy,Spectral-KMeans(谱聚类),GMM-EM(混合高斯模型-期望最大化算法解决),K-Pototypes,CLARANS(基于划分),BIRCH(基于层次),CURE(基于层次),DBSCAN(基于密度),CLIQUE(基于密度和基于网格)
Classification&Regression(分类&回归):
LR(Linear Regression 线性回归),LR(LogisticRegression逻辑回归),SR(Softmax Regression 多分类逻辑回归),GLM(GeneralizedLinear Model 广义线性模型),RR(Ridge Regression 岭回归/L2正则最小二乘回归),LASSO(Least Absolute Shrinkage andSelectionator Operator L1正则最小二乘回归), RF(随机森林),DT(DecisionTree决策树),GBDT(Gradient BoostingDecision Tree 梯度下降决策树),CART(ClassificationAnd Regression Tree 分类回归树),KNN(K-Nearest Neighbor K近邻),SVM(Support VectorMachine),KF(KernelFunction 核函数PolynomialKernel Function 多项式核函数、Guassian KernelFunction 高斯核函数/Radial BasisFunction RBF径向基函数、String KernelFunction 字符串核函数)、 NB(Naive Bayes 朴素贝叶斯),BN(Bayesian Network/Bayesian Belief Network/ Belief Network 贝叶斯网络/贝叶斯信度网络/信念网络),LDA(Linear Discriminant Analysis/FisherLinear Discriminant 线性判别分析/Fisher线性判别),EL(Ensemble Learning集成学习Boosting,Bagging,Stacking),AdaBoost(Adaptive Boosting 自适应增强),MEM(MaximumEntropy Model最大熵模型)
Effectiveness Evaluation(分类效果评估):
Confusion Matrix(混淆矩阵),Precision(精确度),Recall(召回率),Accuracy(准确率),F-score(F得分),ROC Curve(ROC曲线),AUC(AUC面积),LiftCurve(Lift曲线) ,KS Curve(KS曲线)。
PGM(Probabilistic Graphical Models概率图模型):
BN(Bayesian Network/Bayesian Belief Network/ BeliefNetwork 贝叶斯网络/贝叶斯信度网络/信念网络),MC(Markov Chain 马尔科夫链),HMM(HiddenMarkov Model 马尔科夫模型),MEMM(Maximum Entropy Markov Model 最大熵马尔科夫模型),CRF(ConditionalRandom Field 条件随机场),MRF(MarkovRandom Field 马尔科夫随机场)。
NN(Neural Network神经网络):
ANN(Artificial Neural Network 人工神经网络),BP(Error BackPropagation 误差反向传播)
Deep Learning(深度学习):
Auto-encoder(自动编码器),SAE(Stacked Auto-encoders堆叠自动编码器:Sparse Auto-encoders稀疏自动编码器、Denoising Auto-encoders去噪自动编码器、Contractive Auto-encoders 收缩自动编码器),RBM(RestrictedBoltzmann Machine 受限玻尔兹曼机),DBN(Deep Belief Network 深度信念网络),CNN(ConvolutionalNeural Network 卷积神经网络),Word2Vec(词向量学习模型)。
DimensionalityReduction(降维):
LDA LinearDiscriminant Analysis/Fisher Linear Discriminant 线性判别分析/Fisher线性判别,PCA(Principal Component Analysis 主成分分析),ICA(IndependentComponent Analysis 独立成分分析),SVD(Singular Value Decomposition 奇异值分解),FA(FactorAnalysis 因子分析法)。
Text Mining(文本挖掘):
VSM(Vector Space Model向量空间模型),Word2Vec(词向量学习模型),TF(Term Frequency词频),TF-IDF(Term Frequency-Inverse DocumentFrequency 词频-逆向文档频率),MI(MutualInformation 互信息),ECE(Expected Cross Entropy 期望交叉熵),QEMI(二次信息熵),IG(InformationGain 信息增益),IGR(Information Gain Ratio 信息增益率),Gini(基尼系数),x2 Statistic(x2统计量),TEW(TextEvidence Weight文本证据权),OR(Odds Ratio 优势率),N-Gram Model,LSA(Latent Semantic Analysis 潜在语义分析),PLSA(ProbabilisticLatent Semantic Analysis 基于概率的潜在语义分析),LDA(Latent DirichletAllocation 潜在狄利克雷模型)
Association Mining(关联挖掘):
Apriori,FP-growth(Frequency Pattern Tree Growth 频繁模式树生长算法),AprioriAll,Spade。
Recommendation Engine(推荐引擎):
DBR(Demographic-based Recommendation 基于人口统计学的推荐),CBR(Context-basedRecommendation 基于内容的推荐),CF(Collaborative Filtering协同过滤),UCF(User-basedCollaborative Filtering Recommendation 基于用户的协同过滤推荐),ICF(Item-basedCollaborative Filtering Recommendation 基于项目的协同过滤推荐)。
Similarity Measure&Distance Measure(相似性与距离度量):
Euclidean Distance(欧式距离),ManhattanDistance(曼哈顿距离),Chebyshev Distance(切比雪夫距离),MinkowskiDistance(闵可夫斯基距离),Standardized Euclidean Distance(标准化欧氏距离),MahalanobisDistance(马氏距离),Cos(Cosine 余弦),HammingDistance/Edit Distance(汉明距离/编辑距离),JaccardDistance(杰卡德距离),Correlation Coefficient Distance(相关系数距离),InformationEntropy(信息熵),KL(Kullback-Leibler Divergence KL散度/Relative Entropy 相对熵)。
Optimization(最优化):
Non-constrainedOptimization(无约束优化):Cyclic VariableMethods(变量轮换法),Pattern Search Methods(模式搜索法),VariableSimplex Methods(可变单纯形法),Gradient Descent Methods(梯度下降法),Newton Methods(牛顿法),Quasi-NewtonMethods(拟牛顿法),Conjugate Gradient Methods(共轭梯度法)。
ConstrainedOptimization(有约束优化):Approximation Programming Methods(近似规划法),FeasibleDirection Methods(可行方向法),Penalty Function Methods(罚函数法),Multiplier Methods(乘子法)。
Heuristic Algorithm(启发式算法),SA(SimulatedAnnealing,模拟退火算法),GA(genetic algorithm遗传算法)
Feature Selection(特征选择算法):
Mutual Information(互信息),DocumentFrequence(文档频率),Information Gain(信息增益),Chi-squared Test(卡方检验),Gini(基尼系数)。
Outlier Detection(异常点检测算法):
Statistic-based(基于统计),Distance-based(基于距离),Density-based(基于密度),Clustering-based(基于聚类)。
Learning to Rank(基于学习的排序):
Pointwise:McRank;
Pairwise:RankingSVM,RankNet,Frank,RankBoost;
Listwise:AdaRank,SoftRank,LamdaMART;
Tool(工具):
MPI,Hadoop生态圈,Spark,BSP,Weka,Mahout,Scikit-learn,PyBrain…
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
自离后能补办离职证明吗? 我是家里自离的,可以补办辞职手续吗 急救!!!狗狗受凉吃什么就吐什么,该吃什么药 狗狗受凉呕吐吃什么药好得快 公告栏标题里的字如何设定字体及大小 公告栏怎移动啊 我的公告栏 如何设置 怎么让QQ拍拍公告栏文字不滚动 在滚动的公告栏中鼠标放上去时就停止,这种效果怎么做?谢谢了 王者荣耀铂金1和黄金3双排排到的是什么段位的 富士拍立得mini25和7s哪个更适合我们这些喜欢拍风景照的人 有时想拍... 如何修改cad数字样式为gbeitch.shx 异地恋男朋友三天没联系我了我也没联系他他还在乎我吗是不是要分手的... 达瓦普罗威士是什么级别 曲靖妇幼医院是三甲吗 感冒时吃海参好不好? 苹果4新买半个月,(现在 手机玩游戏一天冲两回电好吗?)时电池有影响吗... 重磅皮卡房车终于来了!览众长城山海炮冬测实拍 错过打第二次免疫球蛋白怎么办 学好英语要花很多时间。 汉译英 缙云经济商务局工资 有谁能帮我解解这张吕祖灵符 广州展小二会展服务有限公司怎么样? 面肌痉挛有面神经梳理术和微血管减压术,这两种有什么_面肌痉挛_百度知 ... 请问会计学是文科类还是理工科啊?我想转专业但是我们学校不准跨大类转... 恒网络是什么意思? 台式电脑的音响怎么连接到笔记本上??? 叶片和花朵是属于树枝类吗? 桂花树属于什么类植物 桂花树是什么类植物 我现在唱歌。体验到了两种感觉。请问,那种是真声那种是假声啊? 阿七播放器源码在哪 宽带连接 属性 常规 里面的服务名怎么是空白的?要不要输入什么进去啊... I don't know how to get to wangfujing street改为同义句 盐酸有没有腐蚀性 体型微扁头部圆形触角长呈线状这句话描述的是蜻蜓吗 带长长触角的虫子 有红色条纹 请问是什么虫子啊?? 动态比喻句 我喜欢上一个叫娣的女孩 急求一个网名要看得出我喜欢她的 最好带娣字... if you can't give me the best,fulfill what l want,什么意思 待人之劳,成人之美翻译中文 关于"王水"的疑问 本田不倒翁大灯一直亮着吗 本田电喷不倒翁机油滤芯 在综合布线系统中链路测试中常见的故障有哪?分别是由什么原因引起的_百 ... 章丘市第二实验中学的校长是谁? 北汽威旺m30D变是什么变速箱会不好挂1挡与倒档吗 北汽威旺m30d有安全气囊 北汽威旺m30d是什么意思 北汽威旺m30D变是什么变速箱会不好挂1挡与倒档吗求大神 同源染色体的着丝粒一定相互靠的很近吗?