若函数f(x)定义域为R,满足对任意x1,x2∈R,有f(x1+x2)≤f(x1)+f(x2...
发布网友
发布时间:2024-03-06 10:22
我来回答
共1个回答
热心网友
时间:2024-03-08 12:31
(1)解:f(x1+x2)-[f(x1)+f(x2)]=(x1+x2)2-(x12+x22)=2x1x2
∵x1,x2∈R,∴2x1x2符号不定,∴当2x1x2≤0时,f(x)是V形函数;当2x1x2>0时,f(x)不是V形函数;
(2)证明:假设对任意x1,x2∈R,有lgg(x1+x2)≤lgg(x1)+lgg(x2),
则lgg(x1+x2)-lgg(x1)-lgg(x2)=lg[(x1+x2)2+2]-lg(x12+2)-lg(x22+2)≤0,
∴(x1+x2)2+2≤(x12+2)(x22+2),
∴x12x22+(x1-x2)2+2≥0,显然成立,
∴假设正确,g(x)是对数V形函数;
(3)解:f(x)是对数V形函数
证明:∵f(x)是V形函数,∴对任意x1,x2∈R,有f(x1+x2)≤f(x1)+f(x2),
∵对任意x∈R,有f(x)≥2,∴1f(x1)+1f(x2)≤1,∴0<f(x1)+f(x2)≤f(x1)f(x2),
∴f(x1+x2)≤f(x1)f(x2),
∴lgf(x1+x2)≤lgf(x1)+lgf(x2),
∴f(x)是对数V形函数.