发布网友 发布时间:2022-05-05 09:38
共1个回答
热心网友 时间:2022-06-27 07:05
可去间断点和可导是两个概念,给定一个函数f(x),对该函数在x0取左极限和右极限。f(x)在x0处的左、右极限均存在的间断点称为第一类间断点。
若f(x)在x0处得到左、右极限均存在且相等的间断点,称为可去间断点。而可导的条件是函数可导的充要条件:左导数和右导数都存在并且相等。可去间断点就是左极限=右极限,但是不=该点的函数值,或者在该点没有定义。因此,可去间断点是不连续的。
设f(x)在Xo的某一邻域内有定义且Xo是函数f(x)的间断点,那么如果f(x-)与f(x+)都存在,则称Xo为f(x)的第一类间断点。又如果f(x-)=f(x+)且不等于f(Xo)(或f(Xo)无定义),则称Xo为f(x)的可去间断点(Removable Discontinuity )。
可去间断点可以用重新定义Xo处的函数值使新函数成为连续函数可去间断点是左极限和右极限存在但是该点没有定义又称为可补间断点可去间断点就是左极限=右极限,但是不=该点的函数值,或者在该点没有定义。因此,可去间断点是不连续的。