七年级数学竞赛题答案(希望、走美)
发布网友
发布时间:2022-05-05 15:16
我来回答
共6个回答
热心网友
时间:2022-06-27 16:19
第十八届“希望杯”全国数学邀请赛
初一 第2试
2007年4月15日 上午8:30至10:30
一、选择题(本大题共10小题,每小题4分,共40分)以下每题的四个选项中,仅有一个是正确的,请将正确答案的英文字母写在每题后面的圆括号内。
1、假定未拧紧的水龙头每秒钟渗出2滴水,每滴水约0.05毫升,现有一个水龙头未拧紧,4小时后,才被发现拧紧,在这段时间内,水龙头共滴水约( )(用科学记数法表示,结果保留两位有效数字)
(A)1440毫升。 (B) 毫升。 (C) 毫升。 (D) 毫升。
2、如图1,直线L与∠O的两边分别交于点A、B,则图中以O、A、B为端点的射线的条数总和是( )。
(A)5. (B)6. (C)7. (D)8.
3、整数a,b满足:ab≠O且a+b=O,有以下判断:
○1a,b之间没有正分数; ○2a,b之间没有负分数;
○3a,b之间至多有一个整数; ○4a,b之间至少有一个整数 。
其中,正确判断的个数为( )
(A)1. (B)2. (C)3. (D)4.
4、 方程 的解是 x=( )
(A) (B) (C) (D)
5、如图2,边长为1的正六边形纸片是轴对称图形,它的对称轴的条数是( )。
(A)1. (B)3. (C)6. (D)9.
6、在9个数:-5,-4,-3,-2,-1,0,1,2,3中,能使不等式-3 <-14成立的数的个数是( )
(A)2. (B)3. (C)4. (D)5.
7、韩老师特制了4个同样的立方块,并将它们如图3(a)放置,然后又如图3(b)放置,则图3(b)中四个底面正方形中的点数之和为( )
(A)11. (B)13. (C)14. (D)16.
图3
8、对于彼此互质的三个正整数 ,有以下判断:
① 均为奇数 ② 中必有一个偶数 ③ 没有公因数 ④ 必有公因数
其中,不正确的判断的个数为( )
(A)1 (B)2 (C)3 (D)4
9、将棱长为1厘米的42个立方体积木拼在一起,构成一个实心的长方体。如果长方体底面的周长为18厘米,那么这个长方体的高是( )
(A)2厘米 (B)3厘米 (C)6厘米 (D)7厘米
10、If 0小于c小于b小于a ,then ( )
(A)c+a分之b+a大于等于c分之b大于等于c-a分之b-a(B)b-c分之a-c大于等于b分之a大于等于b+c分之a+c(C)c-a分之b-a大于等于c分之b大于等于c+a分之b+a(D)b+c分之a+c大于等于b分之a大于等于b-c分之a-c
二、填空题(本大题共10小题,每小题4分,共40分)
11、 若有理数 满足 ,则
12、 今天(2007年4月15日,星期日)是第18届“希望杯”全国数学邀请赛举行第2试的日子,那么几天以后的第 天是星期
13、 孔子诞生在公元前551年9月28日,则2007年9月28日是孔子诞辰 周年。(注:不存在公元0年)
14、In Fig。4,ABCD is a rectangle.,The area of the shaded rectangle is
15、 下表是某中学初一(5)班2007年第一学期期末考试数学成绩统计表:
分数 40------59 60-------70 71-------85 86------100
人数 5 19 12 14
这个班数学成绩的平均分不低于 分,不高于 分。(精确到 )
16、 已知 ,其中 代表非0数字,那么
17、 某城市有一百万户居民,每户用水量定额为月平均5吨,由于6,7,8月天热,每户每月多用水1吨,为了不超过全年用水定额,则全年的其它月份每户的用水量应控制在每月平均 吨之内。如果每户每天节约用水2千克,则全市一年(按365天计)节约的水量约占全年用水定额的 %(保留三位有效数字)
18、a,b,c,都是质数,且满足a+b+c+abc=99,则/a分之一减b分之一/+/b分之一减c分之一/+/c分之一减a分之一/= (/……/代表绝对值)
19、 一项机械加工作业,用4台A型车床,5天可以完成:用4台A型车床和2台B型车床,3天可以完成;用3台B型车床和9台C型车床,2天可以完成。若A型、B型和C型车床各一台一起工作6天后,只余下一台A型车床继续工作,则再用 天就可以完成这项作业
20、 设 ,则 和 四个式子中,值最大的是
值最小的是
三、解答题(本大题共3小题,共40分) 要求:写出推算过程。
21、 (本题满分10分)
小明在平面上标出了2007个点并画了一条直线L,他发现:这2007个点中的每一点关于直线L的对称点,仍在这2007个点中,请你说明:这2007个点中至少有1个点在直线L上。
22、 (本题满分15分)
小明和哥哥在环形跑道上练习长跑。他们从同一起点沿相反方向同时出发,每隔25秒钟相遇一次。现在,他们从同一起跑点沿相同方向同时出发,经过25分钟哥哥追上了小明,并且比小明多跑了20圈,求:
(1) 哥哥速度是小明速度的多少倍?
(2) 哥哥追上小明时,小明跑了多少圈?
23、 (本题满分15分)
满足1+3n≤2007,且使得1+5n是完全平方数的正整数n共有多少个?
答案:
一、 选择题(每小题4分。)
题号 1 2 3 4 5 6 7 8 9 10
答案 B D A C C C D C B D
二、 填空题(每小题4分;两个空的小题,每个空2分。)
11 :负三分之二 12:三 13:2257 14:18 15:67;9;80;9 16:98 17:四又三分之二;1.22 18:十九分之十七 19:2 20:a分之一;a+b分之一
三.解答题
21.假设这2007个点都不在直线L上,由于其中每个点 (i=1,2,……,2007)关于直线L的对称点 仍在这2007个点中,所以 不在直线L上。
也就是说,不在直线L上点 (i=1,2,……,2007)与 关于直线L对称的点 成对出现,即平面上标出的点的总数应是偶数个,与点的总数2007相矛盾!
因此,“这2007个点都不在直线L上”的假设不能成立,即这2007个点中至少有1个点在直线L上。
22.设哥哥的速度是 米/秒,小明的速度是 米/秒。环形跑道长s米。
(1)由“经过25分钟哥哥追上小明,并且比小明多跑了20圈”,知
经过 分钟哥哥追上小明,并且比小明多跑了1圈。所以
整理,得,
所以, .
(2)根据题意,得
即 解得,
故经过了25分钟小明跑了
(2)另解 由 ,知小明每跑1圈,哥哥就比小明多跑1圈,所以当哥哥比小明多跑20圈时,小明也跑了20圈。
23.由条件1+3n≤2007得
n≤668,n是正整数。
设1+5n= (m是正整数),则
,这是正整数。
故可设m+1=5k,或m-1=5k(k是正整数)
○1当m+1=5k是, ,由
,得,k≤11
当k=12时, >668。
所以,此时有11个满足题意的正整数n使1+5n是完全平方数;
○2当m-1=5k时, ,
又 < ,且当k=11时 <668,
所以,此时有11个满足题意的正整数n使1+5n是完全平方数。
热心网友
时间:2022-06-27 16:20
一、 填空题(共10道题,每题10分)
1、印度也像中国一样有着灿烂的文化,古代印度有这样一道有趣的数学题:有一群蜜蜂,其中 落在牡丹花上, 落在栀子花上,这两者的差的三倍,飞向月季花,最后剩下一只小蜜蜂在芳香的茉莉花和玉兰花之间飞来飞去,共有 只蜜蜂。
2、在甲容器中装有浓度为10•5%的盐水90毫升,乙容器中装有浓度为11•7%的盐水210毫升,如果先从甲、乙容器中倒出同样多的盐水,再将它们分别倒入对方的容器内搅匀,结果得到浓度相同的盐水,各倒出了 毫升盐水。
3、在下图中,A为半径为3的⊙O外一点,弦BC//AO且BC=3。连结AC。阴影面积等于 (∏取3.14)
4、用0~9这10个数字组成若干个质数,每个数字都恰好用一次,这些质数的和最小是 。
5、从上海开车去南京,原计划中午11:30到达,但出发后车速提高了 ,11点钟就到了,第二天返回时,同一时间从南京出发,按原速行使了120千米后,再将车速提高 ,到达上海时恰好11:10,上海、南京两市间的路程是 千米。
6、将0~9这10数字填入下图的方框中,使得等式成立,现在已经填入“3”,请将其他9个数字填入(注:首位不能为0)
(□□□+□-□□)×3□÷□□=2005
7、一些士兵排成一列横队,第一次从左到右1至4报数,第二次从右到左1至6报数,两次都报3的恰有5名,这列士兵最多有 名。
8、两个长方形如图摆放,M为AD的中点,阴影部分的面积= 。
9、把一个大长方体木块表面上涂满红色后,分割成若干个棱长为1的小正方体,其中恰有两个面涂上红色的小正方体恰好是2005块,大长方体体积的最小值是 。
1 5
2 6
1 6
5 1
4 6
4 2
10、如图,6个3×2的小方格表拼成了6×6的大方格表,请在空白处填入1~6中的数,使得每行、每列中的数各不相同,并且原来6个3×2的小方格表中的数也各不相同。
二、 简答题(共2题,每题10分)
11、某人到花店买花,他只有24元,本打算买6枝玫瑰和3支百合,但钱不够,只好买了4支玫瑰和5支百合,这样他还剩了2元多钱,请你算一算,2支玫瑰和3支百合哪个的价格高?
12、试着把边长为 的这99个小正方形不重叠地放入为1的正方体内,能做到就画出一种方法,不能,请说明理由。
答案:1、15 2、63 3、4.71 4、567
5、 6、(857+9-64)×30÷12=2005 (859+7-64)×30÷12=2005
7、67 8、40 9、2821
10、三种填法如下:
3 4 1 5 2 6
5 2 6 1 3 4
1 6 5 3 4 2
4 3 2 6 5 1
2 1 3 4 6 5
6 5 4 2 1 3
4 3 1 5 2 6
5 2 6 1 3 4
1 6 5 3 4 2
2 4 3 6 5 1
3 1 2 4 6 5
6 5 4 2 1 3
4 3 1 5 2 6
5 2 6 1 3 4
1 6 5 3 4 2
3 4 2 6 5 1
2 1 3 4 6 5
6 5 4 2 1 3
12、能
热心网友
时间:2022-06-27 16:20
第十八届“希望杯”全国数学邀请赛
初一 第2试
2007年4月15日 上午8:30至10:30
一、选择题(本大题共10小题,每小题4分,共40分)以下每题的四个选项中,仅有一个是正确的,请将正确答案的英文字母写在每题后面的圆括号内。
1、假定未拧紧的水龙头每秒钟渗出2滴水,每滴水约0.05毫升,现有一个水龙头未拧紧,4小时后,才被发现拧紧,在这段时间内,水龙头共滴水约( )(用科学记数法表示,结果保留两位有效数字)
(A)1440毫升。 (B) 毫升。 (C) 毫升。 (D) 毫升。
2、如图1,直线L与∠O的两边分别交于点A、B,则图中以O、A、B为端点的射线的条数总和是( )。
(A)5. (B)6. (C)7. (D)8.
3、整数a,b满足:ab≠O且a+b=O,有以下判断:
○1a,b之间没有正分数; ○2a,b之间没有负分数;
○3a,b之间至多有一个整数; ○4a,b之间至少有一个整数 。
其中,正确判断的个数为( )
(A)1. (B)2. (C)3. (D)4.
4、 方程 的解是 x=( )
(A) (B) (C) (D)
5、如图2,边长为1的正六边形纸片是轴对称图形,它的对称轴的条数是( )。
(A)1. (B)3. (C)6. (D)9.
6、在9个数:-5,-4,-3,-2,-1,0,1,2,3中,能使不等式-3 <-14成立的数的个数是( )
(A)2. (B)3. (C)4. (D)5.
7、韩老师特制了4个同样的立方块,并将它们如图3(a)放置,然后又如图3(b)放置,则图3(b)中四个底面正方形中的点数之和为( )
(A)11. (B)13. (C)14. (D)16.
图3
8、对于彼此互质的三个正整数 ,有以下判断:
① 均为奇数 ② 中必有一个偶数 ③ 没有公因数 ④ 必有公因数
其中,不正确的判断的个数为( )
(A)1 (B)2 (C)3 (D)4
9、将棱长为1厘米的42个立方体积木拼在一起,构成一个实心的长方体。如果长方体底面的周长为18厘米,那么这个长方体的高是( )
(A)2厘米 (B)3厘米 (C)6厘米 (D)7厘米
10、If 0小于c小于b小于a ,then ( )
(A)c+a分之b+a大于等于c分之b大于等于c-a分之b-a(B)b-c分之a-c大于等于b分之a大于等于b+c分之a+c(C)c-a分之b-a大于等于c分之b大于等于c+a分之b+a(D)b+c分之a+c大于等于b分之a大于等于b-c分之a-c
二、填空题(本大题共10小题,每小题4分,共40分)
11、 若有理数 满足 ,则
12、 今天(2007年4月15日,星期日)是第18届“希望杯”全国数学邀请赛举行第2试的日子,那么几天以后的第 天是星期
13、 孔子诞生在公元前551年9月28日,则2007年9月28日是孔子诞辰 周年。(注:不存在公元0年)
14、In Fig。4,ABCD is a rectangle.,The area of the shaded rectangle is
15、 下表是某中学初一(5)班2007年第一学期期末考试数学成绩统计表:
分数 40------59 60-------70 71-------85 86------100
人数 5 19 12 14
这个班数学成绩的平均分不低于 分,不高于 分。(精确到 )
16、 已知 ,其中 代表非0数字,那么
17、 某城市有一百万户居民,每户用水量定额为月平均5吨,由于6,7,8月天热,每户每月多用水1吨,为了不超过全年用水定额,则全年的其它月份每户的用水量应控制在每月平均 吨之内。如果每户每天节约用水2千克,则全市一年(按365天计)节约的水量约占全年用水定额的 %(保留三位有效数字)
18、a,b,c,都是质数,且满足a+b+c+abc=99,则/a分之一减b分之一/+/b分之一减c分之一/+/c分之一减a分之一/= (/……/代表绝对值)
19、 一项机械加工作业,用4台A型车床,5天可以完成:用4台A型车床和2台B型车床,3天可以完成;用3台B型车床和9台C型车床,2天可以完成。若A型、B型和C型车床各一台一起工作6天后,只余下一台A型车床继续工作,则再用 天就可以完成这项作业
20、 设 ,则 和 四个式子中,值最大的是
值最小的是
三、解答题(本大题共3小题,共40分) 要求:写出推算过程。
21、 (本题满分10分)
小明在平面上标出了2007个点并画了一条直线L,他发现:这2007个点中的每一点关于直线L的对称点,仍在这2007个点中,请你说明:这2007个点中至少有1个点在直线L上。
22、 (本题满分15分)
小明和哥哥在环形跑道上练习长跑。他们从同一起点沿相反方向同时出发,每隔25秒钟相遇一次。现在,他们从同一起跑点沿相同方向同时出发,经过25分钟哥哥追上了小明,并且比小明多跑了20圈,求:
(1) 哥哥速度是小明速度的多少倍?
(2) 哥哥追上小明时,小明跑了多少圈?
23、 (本题满分15分)
满足1+3n≤2007,且使得1+5n是完全平方数的正整数n共有多少个?
答案:
一、 选择题(每小题4分。)
题号 1 2 3 4 5 6 7 8 9 10
答案 B D A C C C D C B D
二、 填空题(每小题4分;两个空的小题,每个空2分。)
11 :负三分之二 12:三 13:2257 14:18 15:67;9;80;9 16:98 17:四又三分之二;1.22 18:十九分之十七 19:2 20:a分之一;a+b分之一
三.解答题
21.假设这2007个点都不在直线L上,由于其中每个点 (i=1,2,……,2007)关于直线L的对称点 仍在这2007个点中,所以 不在直线L上。
也就是说,不在直线L上点 (i=1,2,……,2007)与 关于直线L对称的点 成对出现,即平面上标出的点的总数应是偶数个,与点的总数2007相矛盾!
因此,“这2007个点都不在直线L上”的假设不能成立,即这2007个点中至少有1个点在直线L上。
22.设哥哥的速度是 米/秒,小明的速度是 米/秒。环形跑道长s米。
(1)由“经过25分钟哥哥追上小明,并且比小明多跑了20圈”,知
经过 分钟哥哥追上小明,并且比小明多跑了1圈。所以
整理,得,
所以, .
(2)根据题意,得
即 解得,
故经过了25分钟小明跑了
(2)另解 由 ,知小明每跑1圈,哥哥就比小明多跑1圈,所以当哥哥比小明多跑20圈时,小明也跑了20圈。
23.由条件1+3n≤2007得
n≤668,n是正整数。
设1+5n= (m是正整数),则
,这是正整数。
故可设m+1=5k,或m-1=5k(k是正整数)
○1当m+1=5k是, ,由
,得,k≤11
当k=12时, >668。
所以,此时有11个满足题意的正整数n使1+5n是完全平方数;
○2当m-1=5k时, ,
又 < ,且当k=11时 <668,
所以,此时有11个满足题意的正整数n使1+5n是完全平方数。赞同37|评论
热心网友
时间:2022-06-27 16:21
你帖题目我帮你做
热心网友
时间:2022-06-27 16:21
第五届希望杯小学组六年级第2试试卷及答案
时间: 2007年04月16日 作者:佚名 来源:希望杯组委会 1780人正在讨论相关问题
热心网友
时间:2022-06-27 16:22
你真猛!!