发布网友 发布时间:2022-05-05 14:50
共1个回答
热心网友 时间:2022-06-27 15:42
分析:(探求定值)用特位定值法.①把点P放在BC中点上.这时过点P的垂线与AB,AC的交点都是点A,PE+PF=2PA,从而可确定定值是底上的高的2倍.因此原题可转化:求证:PA+PB=2AD(AD为底边上的高).证明:∵AD∥PF,∴;.∴.即.∴PE+PF=2AD.②把点P放在点B上.这时PE=0,PF=2AD(三角形中位线性质),结论与①相同.还可以由PF=BC×tanC,把定值定为:BC×tanC.即求证PE+PF=BC×tanC.(证明略)同一道题的定值,可以有不同的表达式,只要是用题中固有的几何量表示均可.例2.已知:同心圆为O中,AB是大圆的直径,点P在小圆上求证:PA2+PB2有定值.分析:用特位定值法.设大圆,小圆半径分别为R,r.①点P放在直径AB上.得PA2+PB2=(R+r)2+(.R-r)2=2(R2+r2).②点P放在与直径AB垂直的另一条直径上也可得PA2+PB2=R2+r2+R2+r2=2(R2+r2).证明:设∠POA=α,根据余弦定理,得PA2=R2+r2-2RrCosα,PB2=R2+r2-2RrCos(180-α).∵Cos(180-α)=Cosα.∴PA2+PB2=2(R2+r2).本题一般知道定值是用两个圆的半径来表示的,所以可省去探求定值的步骤,直接列出PA,PB与R,r的关系式,关键是引入参数α.例3.已知:△ABC中,AB=AC,点P在中位线MN上,BP,CP的延长线分别交AC,AB于E,F.求证:有定值,分析:本题没有明显的特殊位置,不过定值一般是用三角形边长a,b,c来表示的,为便于计算引入参数t,用计算法证明.证明:设MP为t,则NP=a-t.∵MN∥BC,∴,.即;∴=∵c是定线段,∴是定值.即有定值.例4.已知:在以AB为弦的弓形劣弧上取一点M(不包括A、B两点),以M为圆心作圆M和AB相切,分别过A,B作⊙M的切线,两条切线相交于点C.求证:∠ACB有定值.分析:⊙M是△ABC的内切圆,∠AMB是以定线段AB为弦的定弧所含的圆周角,它是个定角.(由正弦定理Sin∠AMB=),所求定值可用它来表示.证明:在△ABC中,∠MAB+∠MBA=180-∠AMB,∵M是△ABC的内心,∴∠CAB+∠CBA=2(180-∠AMB).∴∠ACB=180-(∠CAB+∠CBA)=180-2(180-∠AMB)=2∠AMB-180.由正弦定理,∴Sin∠AMB=.∵弧AB所在圆是个定圆,弦AB和半径R都有定值,∴∠AMB有定值.∴∠ACB有定值2∠AMB-180.