发布网友 发布时间:2024-03-15 17:31
共2个回答
热心网友 时间:2024-07-24 07:00
在用SPSS做一个线性回归分析,结果如图,R方很低,但是显著性都还可以。问题是这个模型预测效果很差。
R方测度了回归直线对观测数据的拟合程度,如果说所有的观测点都落在直线上,则SSE=0,此时R方=1,拟合是完全的,如果y的变化与X无关,则SSR=0,也就是 R方=0,所以可以得到R方的取值范围在【0,1】,同时根据计算公式,也可以得到,R方越接近1说明SSR占SST的占比越大,也就是说明模型拟合越好,反之,如果R方越接近1,说明SSR占SST的占比越小,被解释部分越少,模型拟合越差。
一般在线性回归模型中,如果R方值为0.25,则说明这只能解释模型总变差的25%,但是在模型中研究者更多会关注自变量对因变量是否有影响,R方只是简单的输出说明。
R方可以自己计算也可以借助数据分析工具进行输出,这里利用SPSSAU举例进行说明。
从结果可以看出,不良贷款(亿元)会对本年累计应收贷款(亿元)产生显著的正向影响关系。贷款项目个数(个)并不会对本年累计应收贷款(亿元)产生影响关系。并且模型R方值为0.556,意味着不良贷款(亿元),贷款项目个数(个)可以解释本年累计应收贷款(亿元)的55.6%变化原因。
热心网友 时间:2024-07-24 07:01
R方(拟合优度)是一种用于评估回归模型拟合程度的统计指标,取值范围从0到1,值越大表示模型对观测数据的拟合程度越好。