求函数f(x)=x^3-3x^2-9x+1在[-2,2]上的最大值与最小值
发布网友
发布时间:2024-04-17 02:36
我来回答
共1个回答
热心网友
时间:2024-04-19 07:41
f(x)=x^3-3x^2-9x+1 所以f‘(x)=3x^2-6x-9 令f’(x)=0 所以x^2-2x-3=0 所以(x-3)(x+1)=0所以x1=3 x2=-1
所以f’(x)的值在(负无穷,-1)和(3,正无穷)都是正的,在(-1,3)上都是负的
所以f(x)在(负无穷,-1)和(3,正无穷)都是单调增的,在(-1,3)上是单调减的
因为x属于【-2.2】所以f(x)在【-2.-1)上单调增,在(-1,2)上单调减
因为f(-2)=-8-12+18+1=-1 f(-1)=6 f(2)=8-18-12+1=-21
所以f(x)=x^3-3x^2-9x+1在[-2,2]上的最大值为f(-1)=6 最小值为f(2)=-21