某同学在测定一厚度均匀的圆形玻璃的折射率时,先在白纸上作一与...
发布网友
发布时间:2024-04-08 09:11
我来回答
共1个回答
热心网友
时间:2024-07-18 23:30
(1)当a=-14时,f(x)=-14x2+ln(x+1)(x>-1),
f′(x)=-12x+1x+1=-(x+2)(x?1)2(x+1)(x>-1),
由f'(x)>0,解得-1<x<1,由f'(x)<0,解得x>1.
故函数f(x)的单调递增区间为(-1,1),单调递减区间为(1,+∞).
(2)当x∈[0,+∞)时,不等式f(x)≤x恒成立,即ax2+ln(x+1)-x≤0恒成立,
设g(x)=ax2+ln(x+1)-x(x≥0),
只需g(x)max≤0即可.
g′(x)=2ax+1x+1-1=x[2ax+(2a?1)]x+1,
(ⅰ)当a=0时,g′(x)=?xx+1,当x>0时,g'(x)<0,函数g(x)在(0,+∞)上单调递减,
故g(x)≤g(0)=0成立.
(ⅱ)当a>0时,令g′(x)=x[2ax+(2a?1)]x+1=0,因x∈[0,+∞),所以x=12a-1,
①若12a-1<0,即a>12时,在区间(0,+∞)上,g'(x)>0,
则函数g(x)在(0,+∞)上单调递增,g(x)在[0,+∞)上无最大值(或:当x→+∞时,g(x)→+∞),此时不满足条件;
②若12a-1≥0,即0<a≤12时,函数g(x)在(0,12a-1)上单调递减,在区间(12a-1,+∞)上单调递增,
同样g(x)在[0,+∞)上无最大值,不满足条件.
(ⅲ)当a<0时,g′(x)=x[2ax+(2a?1)]x+1,
∵x∈[0,+∞),∴2ax+(2a-1)<0,
∴g'(x)<0,故函数g(x)在[0,+∞)上单调递减,
故g(x)≤g(0)=0成立.
综上所述,实数a的取值范围是(-∞,0].
(3)因为ln(x+1)≤x,且2n(2n?1+1)(2n+1)=2(12n?1+1-12n+1),
所以ln{(1+22×3)(1+43×5)(1+85×9)?…?[1+2n(2n?1+1)(2n+1)]}
=ln(1+22×3)+ln(1+43×5)+ln(1+85×9)+…+ln[1+2n(2n?1+1)(2n+1)]<22×3+43×5+85×9+…+2n(2n?1+1)(2n+1)
=2[(12-13)+(13-15)+(15-19)+…+(12n?1+1-12n+1)]
=2[(12-12n+1)]<1,
∴ln{(1+22×3)(1+43×5)(1+85×9)?…?[1+2n(2n?1+1)(2n+1)]}<1.