为什么无穷小替换要注意阶数呢?
发布网友
发布时间:2024-04-08 05:05
我来回答
共1个回答
热心网友
时间:2024-05-18 07:42
这就不得不提一个概念:无穷小的阶数。
同样的无穷小,阶数不同,比值的极限会不同。
因此不能随意舍弃高阶的无穷小。
比如,x 趋于 0 时,单纯的求 xcosx-sinx 的极限,完全可以用 x 替换 sinx,1 替换 cosx !!
但求 (xcosx-sinx)/x^3 的极限时,就不能用 x 替换 sinx,因为要与 x^3 比较,
所以必须用 x-x^3/6 替换 sinx 。同理也必须用 1-x^2/2 替换 cosx 。
至于 e^x-1 等价于 x 的问题,也不能一概而论。
总之,无穷小替换要恰到好处,阶数高了没用,阶数低了出错。