发布网友 发布时间:2024-04-05 21:28
共1个回答
热心网友 时间:2024-04-06 00:57
一、数学特性不同
角频率表示单位时间内变化的相角弧度值。角频率是描述物体振动快慢的物理量,与振动系统的固有属性有关,常用符号ω表示。在国际单位制中,角频率的单位是弧度/秒(rad/s)。每个物体都有由它本身性质决定的与振幅无关的频率,叫做固有角频率。
角速度是在物理学中描述物体转动时在单位时间内转过角度以及转动方向的矢量(更准确地说,是伪矢量)。角速度的矢量性:v=ω×r,其中,×表示矢量相乘(叉乘),方向由右手螺旋定则确定,r为矢径,方向由圆心向外。
二、用途不同
角频率在力学,光学,交变电路中,角频率都有着较为广泛的应用。角频率数值上等于谐振动系统中旋转矢量的转动的角速度。频率(f)、角频率(ω)和周期(T)的关系为ω = 2πf = 2π/T。
在三维坐标系中,角速度变得比较复杂。在此状况下,角速度通常被当作向量来看待;甚至更精确一点要当作伪向量。它不只具有数值,而且同时具有方向的特性。数值指的是单位时间内的角度变化率,而方向则是用来描述转动轴的。
扩展资料:
在三维坐标系中,角速度变得比较复杂。在此状况下,角速度通常被当作向量来看待;甚至更精确一点要当作伪向量。它不只具有数值,而且同时具有方向的特性。数值指的是单位时间内的角度变化率,而方向则是用来描述转动轴的。
概念上,可以利用右手定则来标示角速度伪向量的正方向。原则如下:
假设将右手(除了大拇指以外)的手指顺着转动的方向朝内弯曲,则大拇指所指的方向即是角速度向量的方向'
正如同在二维坐标系的例子中,一个质点的移动速度相对于原点可以分成一个沿着径向以及另一个垂直径向的分量。举例而言,原点与质点的速度垂直分量的组合可以定义一个转动平面,质点在此平面上的行为就如同在二维坐标系中的状况下。
其转动轴则是一条通过原点且垂直此平面的线,这个轴订定了角速度伪向量的方向,而角速度的数值则是如同在二维坐标系状况下求得的伪纯量的值。当定义一个指向角速度伪向量方向单位向量时,可以用类似二维坐标系的方式来表示角速度。
参考资料来源:百度百科-角速度
参考资料来源:百度百科-角频率