求一元三次函数详细求解过程~~ 感激不尽! 10x^3+19x^2+17x-3=0_百度...
发布网友
发布时间:2024-04-04 01:50
我来回答
共1个回答
热心网友
时间:2024-07-21 18:22
一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d=0的标准型一元三次方程形式化为x^3+px+q=0的特殊型.
卡尔丹公式的推导
第一步: ax^3+bx^2+cx+d=0 为了方便,约去a得到 x^3+kx^2+mx+n=0 令x=y-k/3 , 代入方程(y-k/3)^3+k(y-k/3)^2+m(y-k/3)+n=0 ,
(y-k/3)^3中的y^2项系数是-k , k(y-k/3)^2中的y^2项系数是k , 所以相加后y^2抵消 , 得到y^3+py+q=0, 其中p=(-k^2/3)+m , q=(2(k/3)^3)-(km/3)+n. 第二步: 方程x^3+px+q=0的三个根为: x1=[-q/2+((q/2)^2+(p/3)^3)^(1/2)]^(1/3)+ +[-q/2-((q/2)^2+(p/3)^3)^(1/2)]^(1/3); x2=w[-q/2+((q/2)^2+(p/3)^3)^(1/2)]^(1/3)+ +w^2[-q/2-((q/2)^2+(p/3)^3)^(1/2)]^(1/3); x3=w^2[-q/2+((q/2)^2+(p/3)^3)^(1/2)]^(1/3)+ +w[-q/2-((q/2)^2+(p/3)^3)^(1/2)]^(1/3), 其中w=(-1+i√3)/2. ×推导过程: 1、方程x^3=1的解为x1=1,x2=-1/2+i√3/2=ω,x3=-1/2-i√3/2=ω^2 ; 2、方程x^3=A的解为x1=A^(1/3),x2=A^(1/3)ω,x3=A^(1/3)ω^2 , 3、一般三次方程ax^3+bx^2+cx+d=0(a≠0),两边同时除以a,可变成x^3+ax^2+bx+c=0的形式. 再令x=y-a/3,代入可消去次高项,变成x^3+px+q=0的形式. 设x=u+v是方程x^3+px+q=0的解,代入整理得: (u+v)(3uv+p)+u^3+v^3+q=0 ①, 如果u和v满足uv=-p/3,u^3+v^3=-q则①成立, 由一元二次方程韦达定理u^3和V^3是方程y^2+qy-(p/3)^3=0的两个根. 解之得,y=-q/2±((q/2)^2+(p/3)^3)^(1/2), 不妨设A=-q/2-((q/2)^2+(p/3)^3)^(1/2),B=-q/2+((q/2)^2+(p/3)^3)^(1/2), 则u^3=A;v^3=B , u= A^(1/3)或者A^(1/3)ω或者A^(1/3)ω^2 ; v= B^(1/3)或者B^(1/3)ω或者B^(1/3)ω^2 , 但是考虑到uv=-p/3,所以u、v只有三组 u1= A^(1/3),v1= B^(1/3); u2=A^(1/3)ω,v2=B^(1/3)ω^2; u3=A^(1/3)ω^2,v3=B^(1/3)ω, 最后: 方程x^3+px+q=0的三个根也出来了,即 x1=u1+v1=A^(1/3)+B^(1/3); x2=A^(1/3)ω+B^(1/3)ω^2; x3=A^(1/3)ω^2+B^(1/3)ω.
卡尔丹公式
方程x^3+px+q=0,(p,q∈R) 判别式△=(q/2)^2+(p/3)^3. x1=A^(1/3)+B^(1/3); x2=A^(1/3)ω+B^(1/3)ω^2; x3=A^(1/3)ω^2+B^(1/3)ω. 这就是著名的卡尔丹公式.
卡尔丹判别法
当△=(q/2)^2+(p/3)^3>0时,有一个实根和一对个共轭虚根; 当△=(q/2)^2+(p/3)^3=0时,有三个实根,其中两个相等; 当△=(q/2)^2+(p/3)^3