发布网友 发布时间:2024-04-04 11:49
共5个回答
热心网友 时间:2024-04-16 00:53
1。
A为n维行向量,意味着它的秩是1,即R(A)=1,基础解系的向量个数为n-R(A)=n-1。
秩的定义是:设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式全等于0,r称为矩阵A的秩。在这里,行向量是1乘n阶矩阵,只能找到1阶子式,所以秩是1。
基本信息
线性代数起源于对二维和三维直角坐标系的研究。在这里,一个向量是一个有方向的线段,由长度和方向同时表示。这样向量可以用来表示物理量,比如力,也可以和标量做加法和乘法。这就是实数向量空间的第一个例子。
现代线性代数已经扩展到研究任意或无限维空间。一个维数为n的向量空间叫做n维空间。在二维和三维空间中大多数有用的结论可以扩展到这些高维空间。
热心网友 时间:2024-04-16 00:48
您好!A为n维行向量,意味着它的秩是1,即R(A)=1,基础解系的向量个数为n-R(A)=n-1.明白了吗?热心网友 时间:2024-04-16 00:53
n热心网友 时间:2024-04-16 00:52
基础解系中向量个数为 n-r(A) = n-1.热心网友 时间:2024-04-16 00:51
1。
A为n维行向量,意味着它的秩是1,即R(A)=1,基础解系的向量个数为n-R(A)=n-1。
秩的定义是:设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式全等于0,r称为矩阵A的秩。在这里,行向量是1乘n阶矩阵,只能找到1阶子式,所以秩是1。
扩展资料
线性代数是代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表达的。例如,在解析几何里,平面上直线的方程是二元一次方程;空间平面的方程是三元一次方程,而空间直线视为两个平面相交。
由两个三元一次方程所组成的方程组来表示。含有n个未知量的一次方程称为线性方程。关于变量是一次的函数称为线性函数。线性关系问题简称线性问题。解线性方程组的问题是最简单的线性问题。