发布网友 发布时间:2024-02-12 10:40
共1个回答
热心网友 时间:2024-10-24 13:37
1、分析现状
分析现状是我们数据分析的基本目的,我们需要明确当前市场环境下,我们的产品市场占有率是多少,注册用户的来源有哪些,注册转化率是多少,购买转化率是多少,竞品是什么,竞品的发展现状如何。
我们和竞争对手相对,优势有哪些,不足又有哪些等等,都是属于对于现状的分析。这里包括两方面的内容,分析自己的现状和分析竞争对手的现状。
2、分析原因
分析原因是数据运营者用得比较多的了,做运营的人,在具体的业务中,不光要知道怎么了,还需要知道为什么如此。在业务上,我们经常会遇到某天用户突然很活跃,有时用户突然大量流失等,每一个变化都是有原因的,我们要做的就是找出这个原因,并给出解决办法,这些就是分析原因。
3、预测未来
数据分析的第三个目的就是预测未来,所谓未雨绸缪,用数据分析的方法预测未来产品的变化趋势,对于产品的运营者来说至关重要。
作为运营者,可根据最近一段时间产品的数据变化,根据趋势线和运营策略的力度,去预测未来的趋势,并用接下来的一段时间去验证这个趋势是否可行,而且实现数据驱动业务增长。
扩展资料:
大数据要分析的数据类型主要有四大类:
1、交易数据(TRANSACTION DATA)
大数据平台能够获取时间跨度更大、更海量的结构化交易数据,这样就可以对更广泛的交易数据类型进行分析,不仅仅包括POS或电子商务购物数据,还包括行为交易数据,例如Web服务器记录的互联网点击流数据日志。
2、人为数据(HUMAN-GENERATED DATA)
非结构数据广泛存在于电子邮件、文档、图片、音频、视频,以及通过博客、维基,尤其是社交媒体产生的数据流。这些数据为使用文本分析功能进行分析提供了丰富的数据源泉。
3、移动数据(MOBILE DATA)
能够上网的智能手机和平板越来越普遍。这些移动设备上的App都能够追踪和沟通无数事件,从App内的交易数据(如搜索产品的记录事件)到个人信息资料或状态报告事件(如地点变更即报告一个新的地理编码)。
4、机器和传感器数据(MACHINE AND SENSOR DATA)
这包括功能设备创建或生成的数据,例如智能电表、智能温度控制器、工厂机器和连接互联网的家用电器。这些设备可以配置为与互联网络中的其他节点通信,还可以自动向中央服务器传输数据,这样就可以对数据进行分析。
机器和传感器数据是来自新兴的物联网(IoT)所产生的主要例子。来自物联网的数据可以用于构建分析模型,连续监测预测性行为(如当传感器值表示有问题时进行识别),提供规定的指令(如警示技术人员在真正出问题之前检查设备)。
参考资料来源:百度百科—大数据