发布网友 发布时间:2024-02-07 06:48
共1个回答
热心网友 时间:2024-07-21 04:05
半正定矩阵怎么判断如下:
1、对于半正定矩阵来说,相应的条件应改为所有的主子式非负。顺序主子式非负并不能推出矩阵是半正定的。
2、半正定矩阵:设A是实对称矩阵。如果对任意的实非零列矩阵X有XT*A*X≥0,就称A为半正定矩阵。
3、A∈Mn(K)是半正定矩阵的充分条件是:A的所有主子式大于或等于零。
负定矩阵判定:
1、设拆悄A是实对称矩阵。如果对任意的实非零旅枝渣列矩阵X有XTAX<0,就称A为负定矩阵。
2、A∈Mn(K)是负定矩阵的充要条件是:-A是正定矩阵。
3、A∈Mn(K)是负定矩阵的充要条件是:$A^{-1}$是负定矩阵。
4、A∈Mn(K)是负定矩阵的充要条件是:A的所有奇数阶顺序主子式小于零,所有偶数阶顺序主子式大于零。
扩展资料:
正定性
n×n的实对称矩阵A如果满足对所有非零向量
对应的二次型:
若Q>0就称A为正定矩阵。若 Q<0则A是一个负定矩阵,若Q>=0则A为半正定矩阵,若A既非半正定,也非半负定,则A为不定矩阵 。对称矩阵的正定性与其特征值密切相关。矩阵是正定的当且仅当其特征值都是正数。
实对称矩阵A是负定的,如果二次型f(x1,x2,...,xn)=X'AX负定。矩阵负定的充分必要条件是它的特征值都小于零。若矩阵A是n阶负定矩阵,则A的偶数阶顺序主子式大于 0,奇数阶顺序主子式小于 0。
实对称矩阵A称为半正定的,如果二次型X'AX半正定,即对于任意搭山不为0的实列向量X,有X'AX≥0。