问答文章1 问答文章501 问答文章1001 问答文章1501 问答文章2001 问答文章2501 问答文章3001 问答文章3501 问答文章4001 问答文章4501 问答文章5001 问答文章5501 问答文章6001 问答文章6501 问答文章7001 问答文章7501 问答文章8001 问答文章8501 问答文章9001 问答文章9501

我想要一份高中数学的公式,谁有啊

发布网友 发布时间:2022-05-03 02:31

我来回答

2个回答

热心网友 时间:2022-07-01 14:43

  数学公式
  抛物线:y = ax *+ bx + c
  就是y等于ax 的平方加上 bx再加上 c
  a > 0时开口向上
  a < 0时开口向下
  c = 0时抛物线经过原点
  b = 0时抛物线对称轴为y轴
  还有顶点式y = a(x+h)* + k
  就是y等于a乘以(x+h)的平方+k
  -h是顶点坐标的x
  k是顶点坐标的y
  一般用于求最大值与最小值
  抛物线标准方程:y^2=2px
  它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2
  由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py
  圆:体积=4/3(pi)(r^3)
  面积=(pi)(r^2)
  周长=2(pi)r
  圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
  圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
  (一)椭圆周长计算公式
  椭圆周长公式:L=2πb+4(a-b)
  椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
  (二)椭圆面积计算公式
  椭圆面积公式: S=πab
  椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
  以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。
  椭圆形物体 体积计算公式椭圆 的 长半径*短半径*PAI*高
  三角函数:
  两角和公式
  sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
  cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
  tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
  cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)
  倍角公式
  tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota
  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
  sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
  cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及
  sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
  tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
  ·万能公式:
  sinα=2tan(α/2)/[1+tan^2(α/2)]
  cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
  tanα=2tan(α/2)/[1-tan^2(α/2)]
  半角公式
  sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
  cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
  tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
  cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))
  和差化积
  2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
  2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
  sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
  tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
  cotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB
  某些数列前n项和
  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
  2+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
  1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
  正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
  余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
  乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
  三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
  |a-b|≥|a|-|b| -|a|≤a≤|a|
  一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
  根与系数的关系 x1+x2=-b/a x1*x2=c/a 注:韦达定理
  判别式 b2-4a=0 注:方程有相等的两实根
  b2-4ac>0 注:方程有两个不相等的个实根
  b2-4ac<0 注:方程有共轭复数根
  公式分类 公式表达式
  圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
  圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
  抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
  直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
  正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
  圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2
  圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
  弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
  锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
  斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
  柱体体积公式 V=s*h 圆柱体 V=pi*r2h
  图形周长 面积 体积公式
  长方形的周长=(长+宽)×2
  正方形的周长=边长×4
  长方形的面积=长×宽
  正方形的面积=边长×边长
  三角形的面积
  已知三角形底a,高h,则S=ah/2
  已知三角形三边a,b,c,半周长p,则S= √[p(p - a)(p - b)(p - c)] (海*式)(p=(a+b+c)/2)
  和:(a+b+c)*(a+b-c)*1/4
  已知三角形两边a,b,这两边夹角C,则S=absinC/2
  设三角形三边分别为a、b、c,内切圆半径为r
  则三角形面积=(a+b+c)r/2
  设三角形三边分别为a、b、c,外接圆半径为r
  则三角形面积=abc/4r
  已知三角形三边a、b、c,则S= √{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积” 南宋秦九韶)
  | a b 1 |
  S△=1/2 * | c d 1 |
  | e f 1 |
  【| a b 1 |
  | c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC
  | e f 1 |
  选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】
  秦九韶三角形中线面积公式:
  S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3
  其中Ma,Mb,Mc为三角形的中线长.
  平行四边形的面积=底×高
  梯形的面积=(上底+下底)×高÷2
  直径=半径×2 半径=直径÷2
  圆的周长=圆周率×直径=
  圆周率×半径×2
  圆的面积=圆周率×半径×半径
  长方体的表面积=
  (长×宽+长×高+宽×高)×2
  长方体的体积 =长×宽×高
  正方体的表面积=棱长×棱长×6
  正方体的体积=棱长×棱长×棱长
  圆柱的侧面积=底面圆的周长×高
  圆柱的表面积=上下底面面积+侧面积
  圆柱的体积=底面积×高
  圆锥的体积=底面积×高÷3
  长方体(正方体、圆柱体)
  的体积=底面积×高
  平面图形
  名称 符号 周长C和面积S
  正方形 a—边长 C=4a
  S=a2
  长方形 a和b-边长 C=2(a+b)
  S=ab
  三角形 a,b,c-三边长
  h-a边上的高
  s-周长的一半
  A,B,C-内角
  其中s=(a+b+c)/2 S=ah/2
  =ab/2?sinC
  =[s(s-a)(s-b)(s-c)]1/2
  =a2sinBsinC/(2sinA)
  1 过两点有且只有一条直线
  2 两点之间线段最短
  3 同角或等角的补角相等
  4 同角或等角的余角相等
  5 过一点有且只有一条直线和已知直线垂直
  6 直线外一点与直线上各点连接的所有线段中,垂线段最短
  7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
  8 如果两条直线都和第三条直线平行,这两条直线也互相平行
  9 同位角相等,两直线平行
  10 内错角相等,两直线平行
  11 同旁内角互补,两直线平行
  12两直线平行,同位角相等
  13 两直线平行,内错角相等
  14 两直线平行,同旁内角互补
  15 定理 三角形两边的和大于第三边
  16 推论 三角形两边的差小于第三边
  17 三角形内角和定理 三角形三个内角的和等于180°
  18 推论1 直角三角形的两个锐角互余
  19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
  20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
  21 全等三角形的对应边、对应角相等
  22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等
  23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等
  24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等
  25 边边边公理(sss) 有三边对应相等的两个三角形全等
  26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等
  27 定理1 在角的平分线上的点到这个角的两边的距离相等
  28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
  29 角的平分线是到角的两边距离相等的所有点的集合
  30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
  31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
  32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
  33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
  34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
  35 推论1 三个角都相等的三角形是等边三角形
  36 推论 2 有一个角等于60°的等腰三角形是等边三角形
  37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
  38 直角三角形斜边上的中线等于斜边上的一半
  39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
  40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
  41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
  42 定理1 关于某条直线对称的两个图形是全等形
  43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
  45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
  46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
  47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
  48定理 四边形的内角和等于360°
  49四边形的外角和等于360°
  50多边形内角和定理 n边形的内角的和等于(n-2)×180°
  51推论 任意多边的外角和等于360°
  52平行四边形性质定理1 平行四边形的对角相等
  53平行四边形性质定理2 平行四边形的对边相等
  54推论 夹在两条平行线间的平行线段相等
  55平行四边形性质定理3 平行四边形的对角线互相平分
  56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
  57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
  58平行四边形判定定理3 对角线互相平分的四边形是平行四边形
  59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
  60矩形性质定理1 矩形的四个角都是直角
  61矩形性质定理2 矩形的对角线相等
  62矩形判定定理1 有三个角是直角的四边形是矩形
  63矩形判定定理2 对角线相等的平行四边形是矩形
  64菱形性质定理1 菱形的四条边都相等
  65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
  66菱形面积=对角线乘积的一半,即s=(a×b)÷2
  67菱形判定定理1 四边都相等的四边形是菱形
  68菱形判定定理2 对角线互相垂直的平行四边形是菱形
  69正方形性质定理1 正方形的四个角都是直角,四条边都相等
  70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
  71定理1 关于中心对称的两个图形是全等的
  72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
  73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
  74等腰梯形性质定理 等腰梯形在同一底上的两个角相等
  75等腰梯形的两条对角线相等
  76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
  77对角线相等的梯形是等腰梯形
  78平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
  79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
  80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边
  81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半
  82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)÷2 s=l×h
  83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d
  84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
  85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b
  86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例
  87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
  88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
  89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
  90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
  91 相似三角形判定定理1 两角对应相等,两三角形相似(asa)
  92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
  93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)
  94 判定定理3 三边对应成比例,两三角形相似(sss)
  95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
  96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
  97 性质定理2 相似三角形周长的比等于相似比
  98 性质定理3 相似三角形面积的比等于相似比的平方
  99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等
  于它的余角的正弦值
  100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
  101圆是定点的距离等于定长的点的集合
  102圆的内部可以看作是圆心的距离小于半径的点的集合
  103圆的外部可以看作是圆心的距离大于半径的点的集合
  104同圆或等圆的半径相等
  105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
  106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
  107到已知角的两边距离相等的点的轨迹,是这个角的平分线
  108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
  109定理 不在同一直线上的三点确定一个圆。
  110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
  111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
  ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
  112推论2 圆的两条平行弦所夹的弧相等
  113圆是以圆心为对称中心的中心对称图形
  114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
  115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
  116定理 一条弧所对的圆周角等于它所对的圆心角的一半
  117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
  118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径
  119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
  120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
  121①直线l和⊙o相交 d<r
  ②直线l和⊙o相切 d=r
  ③直线l和⊙o相离 d>r
  122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
  123切线的性质定理 圆的切线垂直于经过切点的半径
  124推论1 经过圆心且垂直于切线的直线必经过切点
  125推论2 经过切点且垂直于切线的直线必经过圆心
  126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
  127圆的外切四边形的两组对边的和相等
  128弦切角定理 弦切角等于它所夹的弧对的圆周角
  129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
  130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等
  131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的
  两条线段的比例中项
  132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割
  线与圆交点的两条线段长的比例中项
  133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
  134如果两个圆相切,那么切点一定在连心线上
  135①两圆外离 d>r+r ②两圆外切 d=r+r
  ③两圆相交 r-r<d<r+r(r>r)
  ④两圆内切 d=r-r(r>r) ⑤两圆内含d<r-r(r>r)
  136定理 相交两圆的连心线垂直平分两圆的公共弦
  137定理 把圆分成n(n≥3):
  ⑴依次连结各分点所得的多边形是这个圆的内接正n边形
  ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
  138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
  139正n边形的每个内角都等于(n-2)×180°/n
  140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
  141正n边形的面积sn=pnrn/2 p表示正n边形的周长
  142正三角形面积√3a/4 a表示边长
  143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为
  360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
  144弧长计算公式:l=nπr/180
  145扇形面积公式:s扇形=nπr2/360=lr/2
  146内公切线长= d-(r-r) 外公切线长= d-(r+r)
  147等腰三角形的两个底脚相等
  148等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合
  149如果一个三角形的两个角相等,那么这两个角所对的边也相等
  150三条边都相等的三角形叫做等边三角形

热心网友 时间:2022-07-01 14:44

高中数学公式
抛物线:y = ax *+ bx + c
就是y等于ax 的平方加上 bx再加上 c
a > 0时开口向上
a < 0时开口向下
c = 0时抛物线经过原点
b = 0时抛物线对称轴为y轴
还有顶点式y = a(x+h)* + k
就是y等于a乘以(x+h)的平方+k
-h是顶点坐标的x
k是顶点坐标的y
一般用于求最大值与最小值
抛物线标准方程:y^2=2px
它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2
由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py

关于圆的公式
体积=4/3(pi)(r^3)
面积=(pi)(r^2)
周长=2(pi)r
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
(一)椭圆周长计算公式
椭圆周长公式:L=2πb+4(a-b)
椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
(二)椭圆面积计算公式
椭圆面积公式: S=πab
椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。
椭圆形物体 体积计算公式椭圆 的 长半径*短半径*PAI*高

三角函数
两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)
倍角公式
tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及
sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
四倍角公式:
sin4A=-4*(cosA*sinA*(2*sinA^2-1))
cos4A=1+(-8*cosA^2+8*cosA^4)
tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)
五倍角公式:
sin5A=16sinA^5-20sinA^3+5sinA
cos5A=16cosA^5-20cosA^3+5cosA
tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)
六倍角公式:
sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))
cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))
tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)
七倍角公式:
sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))
cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))
tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)
八倍角公式:
sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))
cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)
tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)
九倍角公式:
sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))
cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))
tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)
十倍角公式:
sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))
cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))
tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)
万能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
cotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解
-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系 x1+x2=-b/a x1*x2=c/a 注:韦达定理
判别式 b2-4a=0 注:方程有相等的两实根
b2-4ac>0 注:方程有两个不相等的个实根
b2-4ac<0 注:方程有共轭复数根

立体图形及平面图形的公式
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h
图形周长 面积 体积公式
长方形的周长=(长+宽)×2
正方形的周长=边长×4
长方形的面积=长×宽
正方形的面积=边长×边长

三角形的面积
已知三角形底a,高h,则S=ah/2
已知三角形三边a,b,c,半周长p,则S= √[p(p - a)(p - b)(p - c)] (海*式)(p=(a+b+c)/2)
和:(a+b+c)*(a+b-c)*1/4
已知三角形两边a,b,这两边夹角C,则S=absinC/2
设三角形三边分别为a、b、c,内切圆半径为r
则三角形面积=(a+b+c)r/2
设三角形三边分别为a、b、c,外接圆半径为r
则三角形面积=abc/4r
已知三角形三边a、b、c,则S= √{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积” 南宋秦九韶)
| a b 1 |
S△=1/2 * | c d 1 |
| e f 1 |
【| a b 1 |
| c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC
| e f 1 |
选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】

秦九韶三角形中线面积公式
S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3
其中Ma,Mb,Mc为三角形的中线长.
平行四边形的面积=底×高
梯形的面积=(上底+下底)×高÷2
直径=半径×2 半径=直径÷2
圆的周长=圆周率×直径=
圆周率×半径×2
圆的面积=圆周率×半径×半径
长方体的表面积=
(长×宽+长×高+宽×高)×2
长方体的体积 =长×宽×高
正方体的表面积=棱长×棱长×6
正方体的体积=棱长×棱长×棱长
圆柱的侧面积=底面圆的周长×高
圆柱的表面积=上下底面面积+侧面积
圆柱的体积=底面积×高
圆锥的体积=底面积×高÷3
长方体(正方体、圆柱体)
的体积=底面积×高

平面图形
名称 符号 周长C和面积S
正方形 a—边长 C=4a
S=a2
长方形 a和b-边长 C=2(a+b)
S=ab
三角形 a,b,c-三边长
h-a边上的高
s-周长的一半
A,B,C-内角
其中s=(a+b+c)/2 S=ah/2
=ab/2?sinC
=[s(s-a)(s-b)(s-c)]1/2
=a2sinBsinC/(2sinA)

推论及定理
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等
24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(sss) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48定理 四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理 n边形的内角的和等于(n-2)×180°
51推论 任意多边的外角和等于360°
52平行四边形性质定理1 平行四边形的对角相等
53平行四边形性质定理2 平行四边形的对边相等
54推论 夹在两条平行线间的平行线段相等
55平行四边形性质定理3 平行四边形的对角线互相平分
56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60矩形性质定理1 矩形的四个角都是直角
61矩形性质定理2 矩形的对角线相等
62矩形判定定理1 有三个角是直角的四边形是矩形
63矩形判定定理2 对角线相等的平行四边形是矩形
64菱形性质定理1 菱形的四条边都相等
65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即s=(a×b)÷2
67菱形判定定理1 四边都相等的四边形是菱形
68菱形判定定理2 对角线互相垂直的平行四边形是菱形
69正方形性质定理1 正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1 关于中心对称的两个图形是全等的
72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边
81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半
82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)÷2 s=l×h
83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d
84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b
86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例
87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91 相似三角形判定定理1 两角对应相等,两三角形相似(asa)
92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)
94 判定定理3 三边对应成比例,两三角形相似(sss)
95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
97 性质定理2 相似三角形周长的比等于相似比
98 性质定理3 相似三角形面积的比等于相似比的平方
99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等
于它的余角的正弦值
100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合
103圆的外部可以看作是圆心的距离大于半径的点的集合
104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
109定理 不在同一直线上的三点确定一个圆。
110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2 圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理 一条弧所对的圆周角等于它所对的圆心角的一半
117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径
119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
121①直线l和⊙o相交 d<r
②直线l和⊙o相切 d=r
③直线l和⊙o相离 d>r
122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
123切线的性质定理 圆的切线垂直于经过切点的半径
124推论1 经过圆心且垂直于切线的直线必经过切点
125推论2 经过切点且垂直于切线的直线必经过圆心
126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等
128弦切角定理 弦切角等于它所夹的弧对的圆周角
129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等
131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的
两条线段的比例中项
132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割
线与圆交点的两条线段长的比例中项
133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上
135①两圆外离 d>r+r ②两圆外切 d=r+r
③两圆相交 r-r<d<r+r(r>r)
④两圆内切 d=r-r(r>r) ⑤两圆内含d<r-r(r>r)
136定理 相交两圆的连心线垂直平分两圆的公共弦
137定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139正n边形的每个内角都等于(n-2)×180°/n
140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141正n边形的面积sn=pnrn/2 p表示正n边形的周长
142正三角形面积√3a/4 a表示边长
143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为
360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144弧长计算公式:l=nπr/180
145扇形面积公式:s扇形=nπr2/360=lr/2
146内公切线长= d-(r-r) 外公切线长= d-(r+r)
147等腰三角形的两个底脚相等
148等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合
149如果一个三角形的两个角相等,那么这两个角所对的边也相等
150三条边都相等的三角形叫做等边三角形
声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com
中医能辅助治疗腹水吗 飞行堡垒7零度左右电池显示0%一直正在充电充不进电怎么解决?_百度... ...手机就关机了。一直充也充不进电。为什么呢 富士s205可以用银燕 BY—30stz 的闪光灯么? 富士S205EXR相机适合什么样型号的外置闪光灯 请教高人,富士s205拍微距,能配环闪吗,什么型号,怎么配。谢谢。 逛超市不愿意提东西的男人,还要吗? 男子每天逛超市,一分没花还倒赚3万,经理:难怪监控查不出来,你怎么... 中国g5大学什么意思 求解,上海电信全屋WiFi性价比高不高 落地电风扇规格400mm是16寸吗? 元旦火化人有什么忌讳? 我在邯郸,老板的老父亲去世了,通知我们周六去火化场参加告别仪式,请问有什么风俗习惯和需要注意的事项 父亲火化当天有什么讲究? 小房间挨着窗户做榻榻米,床身正冲门口好吗? 卡西欧和雅马哈电钢应该买哪个? css导航居中 百度空间css代码求破译 onmouseover没有效果 C++地址与指针:定义px=100 为什么y=*px+1=101 而y=*(px+1)=500 爱普生打印机PX101右边两个灯闪亮是怎么回事 如何客观评价Blackpink jisoo的脸蛋 jennie和jisoo的cp名字 jisoo的应援色和粉丝名是什么? 巴西海豚遭不明物体紧缠冲上岸,近看竟是一条丁字裤 ,你怎么看? 下水下网捕鱼用的连体皮裤聊城哪有卖 的? 往邮箱里发送邮件是不是都不可以发送文件夹形式的呢 电子邮件可以发文件夹吗?如何发? 请问网络高手,这两款防火墙哪个最好?最好用?功能强大?占用内存最小? nc 网络安全工具介绍,nc在centos里的rpm包叫啥 seo,短尾词和核心词区别在哪? 十万级预算长安福特福睿斯,有哪些值得入手的优势? 什么是长尾关键词,详细解释 为啥长期收益率高于短期收益率时,预示着经济发展繁荣? 福睿斯很不保值的原因是什么? 浅谈百度推广技巧:什么是长尾关键词 福睿斯到底怎么样啊? 电风扇的规格是指()。括号内填什么? 有老司机说说福特质量吗? 请问基金: 投资基金(债券基金)是短期收益高呢?还是中期好,还是长期好呢? 哪 体育是人类是社会特有的什么? 同样资金,放34天百分之3.6收益率,和14天百分之3收益率哪个更划算 体育的本质是什么? 股票长期和短期预期收益率那哪个高 体育作为社会的一种什么现象他有着令人神往的历史 美国QE4实行为什么使美国长期国债的收益率反而上升了,短期国债的收益率反而下降了? 短期收益率高于长期,银行理财产品该怎么选 劳动法拖欠工资补偿最新标准 体育作为社会的一种什么现象它有着令人神往的历史 体育运动可以对社会现代化做出什么贡献,都有什么