发布网友 发布时间:2024-01-07 01:03
共1个回答
热心网友 时间:2024-01-08 07:21
函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。
如果一个函数在x0处可导,那么它一定在x0处是连续函数。
函数可导定义:
(1)设f(x)在x0及其附近有定义,则当a趋向于0时,若 [f(x0+a)-f(x0)]/a的极限存在, 则称f(x)在x0处可导。
(2)若对于区间(a,b)上任意一点m,f(m)均可导,则称f(x)在(a,b)上可导。
扩展资料
导数计算的原则和方法
1、原则:先化简解析式,使之变成能用八个求导公式求导的函数的和、差、积、商再求导.
2、方法:
①连乘积形式:先展开化为多项式的形式,再求导;
②分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导;
③对数形式:先化为和、差的形式,再求导;
④根式形式:先化为分数指数幂的形式,再求导;
⑤三角形式:先利用三角函数公式转化为和或差的形式,再求导;(理)
⑥复合函数:由外向内,层层求导。
参考资料来源:百度百科-可导