请问正态分布0是什么意思?
发布网友
发布时间:2024-01-06 05:31
我来回答
共1个回答
热心网友
时间:2024-07-27 02:03
正态分布0等于0.5。
如果随机变量X服从标准正态分布,即X~N(0,1)。
概率密度为f(x)=(1/√2π)exp(-x^2/2)。
而其中exp(-x^2/2)为e的-x^2/2次方,其定义域为(-∞,+∞),从概率密度表达式可以看出,f(x)是偶函数,即f(x)的图像关于y轴对称。
Φ(x)定义为服从标准正态分布的随机变量X的分布函数,其值为对f(x)关于x积分,从-∞积到x。从f(x)图像上看,Φ(x)的值相当于f(x)曲线一下,x轴曲线以上,区域为(-∞,x)这段的面积。由于f(x)为偶函数,且有分布函数性质Φ(+∞)=1,可以求出Φ(0)=0.5。
正态分布的特点:
①密度函数关于平均值对称。
②平均值与它的众数以及中位数是同一数值。
③函数曲线下68.268949%的面积在平均数左右的一个标准差范围内。
④95.449974%的面积在平均数左右两个标准差的范围内。99.730020%的面积在平均数左右三个标准差的范围内。99.993666%的面积在平均数左右四个标准差的范围内。
⑤函数曲线的反曲点(inflectionpoint)为离平均数一个标准差距离的位置。