发布网友 发布时间:2022-05-03 04:38
共3个回答
热心网友 时间:2022-06-07 18:05
在线性代数中,一个n×n矩阵A的主对角线(从左上方至右下方的对角线)上各个元素的总和被称为矩阵A的迹(或迹数),一般记作tr(A)。
性质:
设有N阶矩阵A,那么矩阵A的迹(用表示)就等于A的特征值的总和,也即矩阵A的主对角线元素的总和。
1、迹是所有对角元的和。
2、迹是所有特征值的和。
3、某些时候也利用tr(AB)=tr(BA)来求迹。
4、tr(mA+nB)=mtr(A)+ntr(B)。
扩展资料
在数值分析中,由于数值计算误差、测量误差、噪声和病态矩阵的存在,零奇异值通常表现为一个小数值。为了便于讨论和计算,把一个矩阵分解成性质上更简单或更熟悉的矩阵的组合。
由于矩阵的特征值和特征向量在矩阵的对角化中占有特殊的位置,提出了矩阵的特征值分解。虽然矩阵的特征值有很好的性质,但它们并不总是正确地表示矩阵的“大小”。
矩阵的奇异值和奇异值分解是矩阵理论和应用中非常重要的内容。它已成为多变量反馈控制系统最重要和基本的分析工具之一。它表示反馈控制系统的输出/输入增益,能反映控制系统的特性。
参考资料:百度百科-矩阵的迹
热心网友 时间:2022-06-07 18:05
多个矩阵相乘得到的方阵的迹,和将这些矩阵中的最后一个挪到最前面之后相乘的迹是相同的。
将一个矩阵分解为比较简单或者性质比较熟悉的矩阵之组合,方便讨论和计算。由于矩阵的特征值和特征向量在化矩阵为对角形的问题中占有特殊位置, 因此矩阵的特征值分解。
尽管矩阵的特征值具有非常好的性质,但是并不是总能正确地表示矩阵的“大小”。矩阵的奇异值和按奇异值分解是矩阵理论和应用中十分重要的内容。
扩展资料:
矩阵已成为多变量反馈控制系统最重要最基本的分析工具之一,奇异值实际上是复数标量绝对值概念的推广, 表示了反馈控制系统的输出/输入增益,能反映控制系统的特性。
某些时候也利用tr(AB)=tr(BA)来求迹,tr(mA+nB)=m tr(A)+n tr(B)奇异值分解(Singular value decomposition )。
参考资料来源:百度百科-矩阵的迹热心网友 时间:2022-06-07 18:06
求矩阵A的迹主要用两种方法: