发布网友 发布时间:2022-05-03 04:48
共1个回答
热心网友 时间:2023-10-10 00:34
实对称矩阵求特征值1、首先,确保给定矩阵是实对称矩阵。实对称矩阵满足矩阵的转置等于矩阵本身。2、使用特征值分解的方法,将实对称矩阵表示为特征向量和特征值的乘积形式。特征向量构成的正交矩阵Q,和对角矩阵Λ,A = QΛQ^T,其中,Q是特征向量组成的矩阵,Λ是特征值对角矩阵。3、求解特征值可以转化为求解矩阵A的特...
实对称矩阵的特征值求法技巧9.若A的n个特征值互不相同,则A可对角化。10.若A的k重特征值μ有k个线性无关的特征向量,则A可对角化。11.若A有k重特征值μ,齐次方程(A−μE)X=0解空间维数为k,则A可对角化。12.若A有k重特征值,矩阵A−μE的秩为n−k,则A可对角化。13.若A是对称矩阵,则属...
实对称矩阵特征值怎么求2、Jacobi迭代法:通过对角化矩阵,将原矩阵转化为对角形(所有非主对角线元素均变成零)求得特征值和相应的正交归一化的特征向量。3、幂法:通过迭代逼近方法来计算最大模(绝对值最大)的特征向量和相应的特征值。方法通过不断将初始向量乘以实对称矩阵,进行归一化处理来逐步逼近所需求解的主要(最大...
实对称矩阵求特征值技巧实对称矩阵求特征值 那么就是解行列式方程|A-λE|=0 解出的λ值就是特征值 而且实对称矩阵 一定可以解出实特征值的 觉得不好解,行列式展开都行
实对称矩阵怎么求特征值和特征向量方法一:实对称矩阵不同特征值对应的特征向量相互正交,由此可得第三个特征值对应的特征向量,进一步可得到第三个特征值。方法二:实对称矩阵所有特征值的和等于矩阵对角线上元素的代数和,所有特征值的积等于矩阵的行列式的值。据此可得第三个特征值。实对称矩阵A的不同特征值对应的特征向量是正交的。实...
实对称矩阵求特征值问题 特征值如何求解: 由已知中的等式知 -1, 1 是A的特征值, 且 (1,0,-1)^T, (1,0,1)^T分别是A的属于特征值-1,1的特征向量.因为 r(A) = 2, 所以|A| = 0. 所以 0 是A的特征值. 设a = (x,y,z)^T 是A的属于0的特征向量, 则由A是3阶实对称矩阵, 所以A的属于不同特征值的特征向量...
如何求一个实对称阵的特征值与特征向量先求特征值:再分别求特征向量:得到矩阵P 显然该实对称矩阵有3个不同的特征值,有3个线性无关的特征向量,因此可以对角化 并且有P^(-1)AP=diag(0,-1,9)
对称矩阵求特征值技巧单论这个矩阵而言(记成A),当然是有简单办法的,一眼就能看出特征值是2,2,2,-2。道理很简单,目测就知道A的列互相正交,且每列的模都是2(或者直接验证A^TA=4I),就是说A/2是实对称的正交阵,所以A/2的特征值只能是1或-1,即A的特征值是2或-2。trA=4是四个特征值的和,所以其中...
实对称矩阵a的特征值怎么求?解: |A-λE|= |2-λ 2 -2| |2 5-λ -4| |-2 -4 5-λ| r3+r2 (消0的同时, 还能提出公因子, 这是最好的结果)|2-λ 2 -2| |2 5-λ -4| |0 1-λ 1-λ| c2-c3 |2-λ 4 -2| |2 9-λ -4| |0 0 1-λ| = (1-λ)[(2-λ)(9-λ)-8] (按第3行...
A=0 -1 1 -1 0 1 1 1 0的三阶实对称矩阵怎么求特征值,不会化,请详细点...求矩阵的特征值一般用两种方法:一是将其化简为对角阵,二是令λE-A=0,解出λ的值即为特征值。通常是用第二种方法,便于计算特征值对应的特征向量,步骤如下:此题用第一种方法也可化简求出,可自行尝试。注意求λE-A时A除对角线上的元素要变号,不要犯上面答题者的错误。希望能帮到你,望...