12个球,其中一个质量有差异,给你一架没有砝码的天平,找出那个球
发布网友
发布时间:2024-01-21 23:23
我来回答
共3个回答
热心网友
时间:2024-03-15 18:02
将12个球任意分成3组,每组4个。分别任意编号为A、B、C、D;a、b、c、d和1、2、3、4。
将A、B、C、D(在左)和a、b、c、d(在右)这两组放到天平左右两边。会出现三种情况:
第一种情况:天平保持平衡。那么有问题的球只能在1、2、3、4这四个球当中。将a、b、c三个球从天平上拿下来,1、2、3三个球放到天平右边。会出现3种情况:
第1种情况:天平平衡。则有问题的球是4号球。这时把所有的球从天平上撤下来,将4号球和任何一个其他球分别放在天平两边,可以知道有问题的4号球是轻还是重;
第2种情况:天平左重右轻。则有问题的球在1、2、3三个球当中,而且有问题的球是轻的。将所有的球从天平上撤下来,将1号球和2号球分别放置在天平两边,若平衡,则3号球有问题;若不平衡,则哪边高哪边的球是问题球。
第3种情况:天平右重左轻,则有问题的球在1、2、3三个球当中,而且有问题的球是重的。以下步骤参照“第2种情况”后半步。
第二种情况:天平左重右轻。则1、2、3、4四个球是正常球。
将a、b、c三个球从天平右边取下,将1、2、3三个球放在天平右边。现在天平的左边四个球是A、B、C、D,右边四个球是1、2、3、d。将d球与D球互换一下位置,现在天平的左边四个球是A、B、C、d,右边四个球是1、2、3、D。(请记住。)换位置以后可能出现3种情况:
第1种情况:天平恢复平衡。则天平上现有的8个球都是正常球,有问题的球在a、b、c三个球当中且问题球为轻的。下面的步骤不需要赘述了吧?
第2种情况:天平仍然左重右轻。则取下的a、b、c三个球是正常球,这不需要证明。因为d球是从原来轻的右边换过来的,现在右边还是轻,说明d球没有问题;同理,D球也没有问题。现在有9个球是没有问题的,分别是:1、2、3、4、a、b、c、d和D。可以知道,问题球在A、B、C三个球当中,且该球为重的。以下从略。
第3种情况:天平发生相反的变化——左轻右重。则取下的a、b、c三个球是正常球,这不需要证明。由于A、B、C三个球始终在左边,说明导致天平反向倾斜的因素不是它们中间的任何一个。现在我们有个10球是正常球,分别是:1、2、3、4、a、b、c、A、B、C,有问题的球非D即d。不是D重就是d轻。将其他球从天平上取下,将D球放在天平左边,任意一个正常球放在天平右边。只有两种情况:若平衡,则问题球是d球,为轻;若不平衡,则D球是问题球,重。
第三种情况:天平右重左轻。则1、2、3、4四个球是正常球。后续证明参照第二种情况。因为编号是任意的,实际上第三种情况与第二种情况没有本质区别。
热心网友
时间:2024-03-15 18:02
4个一组,取两组于天平左右,等重无问题,坏球在第三组,不等重,将第三组与任一组对换,总之找到重量不等的那组
4个球分2个一组,从好球中再取2个成第三组,同上,与好球不同的>>>>
懒的写了
热心网友
时间:2024-03-15 18:03
4-4如果相同,表示错的在剩下的4个
如果不同,取任意一堆跟剩下的比,一样,表示是另一堆,不一样,就是选择的这堆
然后2-2排除(其中2个是从前面确定正常的里面取),相同则都是正常的,不同,就跟另外的比