什么?向量? 如何计算?
发布网友
发布时间:2022-05-03 03:36
我来回答
共2个回答
热心网友
时间:2022-06-23 12:39
空间中具有大小和方向的量叫做空间向量。向量的大小叫做向量的长度或模(moius)。
规定,长度为0的向量叫做零向量,记为0.
模为1的向量称为单位向量。
与向量a长度相等而方向相反的向量,称为a的相反向量。记为-a
方向相等且模相等的向量称为相等向量。
第一步:
按照图形建立三维坐标系o-xyz
之后,将点的坐标带进去,求出所需向量的坐标。
第二步:
求平面的法向量:
令法向量n=(x,y,z)
因为法向量垂直于此平面
所以n垂直于此面内两相交直线(其方向向量为a,b)
可列出两个方程
n·a=0,n·b=0
两个方程,三个未知数
然后根据计算方便
取z(或x或y)等于一个数(如:1,√2等)
代入即可求出面的一个法向量n的坐标了.
会求法向量后
1.斜线与平面所成的角就是求出斜线的方向向量与平面的法向量n的夹角,所求角为上述夹角的余角或者夹角减去π/2.
2.点到平面的距离就是求出该面的法向量n在平面上任取(除被求点在该平面的射影外)一点,
求出平面外那点和你所取的那点所构成的向量,记为a
点到平面的距离就是法向量n与a的数量积的绝对值|n·a|除以法向量的模|n|即得所求.
3.二面角的求法就是求出两个平面的法向量
可以求出两个法向量的夹角为两向量的数量积除以两向量模的乘积
:cos
=|n·m|/(|n||m|)
那么二面角就是上面求的两法向量的夹角或者它的补角。
4.设直线l,m的方向向量分别为a,b,平面α,β的法向量分别为μ,ν
则
线线平行
l∥m<=>a∥b
<=>
a=kb
线面平行
l∥α<=>a⊥μ
<=>a·μ=0
面面平行
α∥β<=>μ∥ν
<=>μ=kν
线线垂直
l⊥m<=>a⊥b
<=>a·b=0
线面垂直
l⊥α
<=>a∥μ
<=>
a=kμ
面面垂直
α⊥β<=>
μ⊥ν
<=>μ·ν=0
5.向量的坐标运算:设a=(x1,y1),b=(x2,y2),则
1.|a|=√(x1²+y1²)
2.a+b=(x1+x2,y1+y2)
3.a-b=(x1-x2,y1-y2)
4.ka=k(x1,y1)=(kx1,ky1)
5.a·b=x1x2+y1y2
6.a∥b<=>
x1y2=x2y1(一般写为:x1y2-x2y1=0)
7.a⊥b<=>
a·b=0<=>x1x2+y1y2=0
8.cos
=(a·b)/(|a|·|b|)=(x1x2+y1y2)
/
[
√(x1²+y1²)·√(x2²+y2²)
]
注:x1中的1为下标,以此类推
热心网友
时间:2022-06-23 13:57
在数学与物理中,既有大小又有方向的量叫做向量(亦称矢量),在数学中与之相对应的是数量,在物理中与之相对应的是标量。解:设a=(x,y),b=(x',y')。
1、向量的加法
a+b=(x+x',y+y')。
2、向量的减法
a=(x,y)b=(x',y')
则a-b=(x-x',y-y')
3、数乘向量
实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。
当λ>0时,λa与a同方向
当λ
向量的数乘
当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。