椭圆面积公式的证明过程
发布网友
发布时间:2022-05-02 13:37
我来回答
共1个回答
热心网友
时间:2022-06-20 07:24
1.仿射变换法
其实从椭圆方程可知,椭圆是一个被“压缩”了的圆。
设椭圆方程为:(x/a)^2+(y/b)^2=1
令:x'=x,y'=y*a/b,
我们就可以在新的坐标系中得到一个圆:x'^2+y'^2=a^2
新坐标系其实是一个在y方向等比(比例为a/b)拉长了的坐标系,这样在新坐标系得到面积 S=π*a^2后,再乘以比例b/a后得到:S=π*a*b 就是所求答案
2.积分:(SQR为根号)
取第一象限部分,y=SQR(b^2-b^2x^2/a^2),积分从0到a,换元t=x/a, 得S/4=ab∫(0,1)SQR(1-t^2)dt,根据积分的几何意义,所求的积分为1/4单位圆的面积,得证S=πab