发布网友 发布时间:2022-05-02 15:14
共1个回答
热心网友 时间:2022-06-20 14:39
(一)煤层气的生成
植物遗体埋藏后,经过微生物的生物化学作用转化为泥炭(泥炭化作用阶段),泥炭又经历以物理化学作用为主的地质作用,向褐煤、烟煤和无烟煤转化(煤化作用阶段)。在煤化作用过程中,成煤物质发生了复杂的物理化学变化,挥发分含量和含水量减少,发热量和固定碳的含量增加,同时也生成了以甲烷为主的气体。煤体由褐煤转化为烟煤的过程,每吨煤伴随有280~350m3(甚至更多)的甲烷及100~150m3的二氧化碳析出。
泥炭在煤化作用过程中,通过两个过程,即生物成因过程和热成因过程而生成气体。尽管生成气体的主要成分为甲烷,但同时还有水、二氧化碳、湿气和液态烃释放出来(表4-4)。
表4-4煤化作用过程中(至Ro=2.0%)所生成的气体体积表
注:①scf:标准立方英尺.Standardcubicfeet的缩写,是国外天然气行业常用单位。1scf=0.0283168m3。Tscf为万亿标准立方英尺。(据Scott,1993)
根据来源的不同(生物成因和热成因)和煤化作用过程中气体化学成分的组成变化可将煤层气分类(表4-5)。
表4-5生物成因和热成因煤层气产生的阶段表
(据Scott et al.,1994)
1.生物成因煤层气
生物成因煤层气,是有机质在微生物降解作用下的产物,是指在相对低的温度(一般小于50℃)条件下,通过细菌的参与或作用,在煤层中生成的以甲烷为主并含少量其他成分的气体。生物成因煤层气的生成有两种机制,即二氧化碳的还原作用和有机酸(一般为乙酸)的发酵作用(Law,1993)。尽管两种作用都在近地表环境中进行,但根据组分研究,大部分古代聚集的生物气可能来自二氧化碳的还原作用。煤层中生成大量生物成因煤层气的有利条件是:大量有机质的快速沉积、充裕的孔隙空间、低温、高pH值的缺氧环境、低硫酸盐浓度(Law,1993)。按照生气时间、母质以及地质条件的不同,生物成因煤层气有原生生物成因气和次生生物成因气两种类型,两者在成因上无本质差别。
(1)原生生物成因煤层气:原生生物成因煤层气,是在煤化作用阶段早期泥炭沼泽环境中的低变质煤(泥炭到褐煤)经微生物作用使有机质发生一系列复杂过程所生成的气体,又称之为早期生物成因煤层气。由泥炭至褐煤阶段,可生成原生生物气量约为38m3/t。
对于原生生物成因煤层气和热成因煤层气的形成阶段,不同学者的划分方案不尽相同。Scott等以Ro<0.3%为原生生物气的界限值,而热成因煤层气开始生成的Ro值为0.5%(表4-5);Palmer将(原生)生物成因煤层气和热成因煤层气的Ro临界值定为0.5%;Rice(1993)认为热成因煤层气形成始于0.6%左右。传统的天然气成因理论认为,生物煤层气一般形成于Ro值为0.3%以下,而热成因煤层气形成于Ro值在0.6%~0.7%之上,即生气母质在Ro值0.3%~0.6%的热演化阶段不生气。但近年来的研究表明,生气母质在Ro值为0.3%~0.6%阶段仍然生气,且可形成相当规模的气田(目前出现的多为煤型气田),这一阶段所生成的气体称为生物热催化过渡带气(徐永昌,1994),即是说,有机质生气是一个连续的过程,煤层气也应如此。
由于泥炭阶段煤层温度和压力较低,煤的吸附能力较弱,且由于泥炭的含水量较大,煤中的孔隙表面多被水分子所占据,故原生生物成因气在煤层中的吸附量较少。大多数原生生物成因气和二氧化碳极易扩散到大气中或溶解于地层水并最终在压实和煤化作用过程被排出(Scott,1993),因此原生生物成因气较难成藏。
(2)次生生物成因煤层气:煤系地层在后期被构造作用抬升并剥蚀到近地表,细菌通过流动水(多为大气降水)进入煤层水中。在低、中煤阶煤中,当温度、盐度等环境条件适宜微生物生存时,在相对低的温度下(一般小于56℃),细菌通过降解和代谢作用将煤层中已生成的湿气、正烷烃和其他有机化合物转变成甲烷和二氧化碳,即形成次生生物成因煤层气。
煤层中的生物成因气大多数可能为与地下水流动有关的次生生物成因煤层气。大气水通过渗透性煤层或其他富有机质岩石将细菌带入煤层,细菌的新陈代谢活动产生次生生物成因煤层气。因此,次生生物成因煤层气与原生生物成因煤层气的不同之处在于—细菌是煤层在盆地边缘埋藏、煤化及随后的抬升和剥蚀之后才进入煤层的(Scott,1993)。
次生生物成因煤层气的形成时代一般较晚(几万至几百万年前)。煤层中存留的生物成因煤层气大部分属于次生生物成因煤层气。次生生物成因煤层气的生成和保存需要以下条件:①煤阶为褐煤—焦煤;②煤层所在区域发生过隆起(抬升)作用;③煤层有适宜的渗透性;④沿盆地边缘有流水回灌到盆地煤层中;⑤有细菌运移到煤层中;⑥煤层具有较高的储层压力和能储存大量气体的圈闭条件等(Law,1993;Scott et al.,1994)。
假如煤化作用、区域抬升和次生生物成因煤层气之后煤层又埋藏并进一步煤化,或者构造运动改变了盆地水动力条件,则次生生物成因煤层气的化学和同位素特征将会消失(Gould和Smith,1979)。
2.热成因煤层气
热成因煤层气,是在温度(>50℃)和压力作用下,煤中有机质发生一系列物理、化学变化,煤中大量富氢和富氧的挥发分物质主要以甲烷、二氧化碳和水的形式释放出来。在较高温度下,有机酸的脱羧基作用也可以生成甲烷和二氧化碳(Ayers et al.,1994)。
随着褐煤埋藏深度增加、温度上升,煤的变质程度不断提高,生成大量的甲烷和其他气体。这一变质过程导致有机质不断脱氧、脱氢、富碳。生成的气体类型取决于煤的变质程度(图4-1)。Meissner(1984)认为:当镜质组反射率(Ro,max)大于0.73%、干燥无灰基挥发分含量大于37.8%时,热成因煤层气开始大量生成。Law(1985)认为热成因煤层气开始大量生成时的温度为88~93℃,Ro,max为0.80%。Rightmire et al.(1984)认为:当Ro,max为0.60%、挥发分为40.24%即相当于高挥发分烟煤C时(相当于我国的褐煤—长焰煤阶段)热成因煤层气开始生成,生气高峰在150℃左右,相当于中挥发分烟煤、低挥发分烟煤、半无烟煤(相当于我国的焦煤—贫煤阶段)。张新民等(1991)以Ro,max=1.90%为界,划分0.50%<Ro,max<1.90%的成熟阶段为热解气阶段,Ro,max>1.90%的过成熟阶段为裂解气阶段。因为煤是腐殖型干酪根(Ⅲ型干酪根),成岩和煤化作用期间不存在明显的液态烃过程,热解气、裂解气的划分不是十分严格。
据Hunt(1979)研究:在煤化学作用早期(地层温度<120℃),生成的气体以二氧化碳为主,在高挥发分烟煤和中挥发分烟煤分界处(相当于我国的肥煤阶段)所生成的二氧化碳是甲烷的两倍多。在该点之后,甲烷气的生成量迅速增加,产气高峰在中挥发分烟煤与低挥发分烟煤的分界处(相当于150℃)。此时,镜质组反射率达1.8%左右,生成的气量约占从褐煤至无烟煤总生气量的70%。之后继续生气,至无烟煤2号(镜质组反射率超过4.0%),逐渐停止生气过程。
热成因甲烷的生成大致分三个阶段:
(1)褐煤至长焰煤阶段———生成的气量多,成分以CO2为主(占72%~92%);烃类<20%,而且以甲烷为主,重烃气<4%。
(2)长焰煤至焦煤阶段———烃类气体迅速增加(占70%~80%),CO2下降至10%左右。烃类气体以CH4为主但含较多的重烃,至肥煤、焦煤时重烃可占10%~20%。该阶段是主要的生油阶段,如果煤中壳质组含量多,则油和湿气含量亦多。
(3)瘦煤至无烟煤阶段———烃类气体占70%,其中CH4占绝对优势(97%~99%),几乎没有重烃。
煤阶和有机质性质不同,其产气量差异很大。煤阶高,产生的煤型气多。据前苏联报道,形成1t褐煤可产生38~68m3煤型气,形成1t长焰煤可产生138~168m3煤型气,相应地形成1t气煤、肥煤、焦煤、瘦煤、贫煤、无烟煤则分别可产生182~212m3、199~230m3、240~270m3、257~287m3、295~330m3、346~422m3煤型气。不同的显微组分对成气的贡献不同,王少昌等(1985)对低煤阶煤显微组分的热模拟实验结果表明:壳质组、镜质组、惰质组最终成烃效率比约为3.3∶1.0∶0.8。傅家谟等(1990)认为,在相同演化条件下,惰质组产气率最低,镜质组产气率是惰质组的4.3倍,壳质组产气率为惰质组的11倍并产出较多的液态烃。
(二)煤层气的运移
大多数煤层是自生自储的。然而,煤储层中可能包含自源或运移来的热成因气、生物成因气或混合气(Rice,1993;Scott et al.,1994)。在某些情况下,煤层既是热成因煤层气的源岩又是其储层,煤层中无气体的运移。然而在另外一些情况下,煤层圈闭(吸附)了从其他源岩运移来的气体,或煤层吸附煤层裂隙与水界面处微生物生成的气体(次生生物气),则煤层中出现气体的运移。
储层压力可将煤层气保持在煤的微构造中。由于自然原因或者人类活动煤层压力降低,气体解吸、扩散最终以游离气流动,从而导致气体的运移。自然的降压方法主要是抬升剥蚀,抬升剥蚀通常发生在盆地边缘,但也可以在更大区域中发生。煤矿开采或气井采气也可导致煤层中的压力降低。煤大多是饱含水的,而煤层的泄水也能使压力降低。煤层微构造中气体的解吸和扩散过程使气体释放出来,然后开始运移,从而导致煤层气组分的变化。