发布网友 发布时间:2022-05-04 17:39
共1个回答
热心网友 时间:2022-06-25 00:40
摘要对于线性定常系统,当输入端加入一正弦信号时,其稳态输出是一个与输入信号频率相同,但幅值和相位都不同的正弦信号。幅频特性:,即输出与输入信号的幅度比值,通常转换成形式。相频特性:,可以直接基于虚拟示波器读取,也可用“李沙育图形”法得到。可以将用Bode图或Nyquist图表示幅频特性和相频特性,具体参考教材。在leaSaC实验台上采用的测试结构图如图1所示。被测稳定系统对于本实验就是有源放大电路模拟的一、二阶稳定系统。咨询记录 · 回答于2021-11-04在二阶系统的频率特性测量时,如何预设和控制信号发生器的参数对于线性定常系统,当输入端加入一正弦信号时,其稳态输出是一个与输入信号频率相同,但幅值和相位都不同的正弦信号。幅频特性:,即输出与输入信号的幅度比值,通常转换成形式。相频特性:,可以直接基于虚拟示波器读取,也可用“李沙育图形”法得到。可以将用Bode图或Nyquist图表示幅频特性和相频特性,具体参考教材。在leaSaC实验台上采用的测试结构图如图1所示。被测稳定系统对于本实验就是有源放大电路模拟的一、二阶稳定系统。1)正弦信号源的产生方法在做频率特性测试时,正弦波信号可以由多功能信号发生器产生,该信号发生器所产生的正弦波频率为0.01Hz至12MHz,幅值0至5V。一阶系统频率特性测试需要0.5Hz~64Hz的正弦波信号,二阶系统频率特性测试需要0.5Hz~16Hz的正弦波信号,信号发生器的输出口为OUT+口。由多功能信号发生器的OUT+口产生相对应的频率的正弦波信号,连接到被测系统的输入端,之后利用Labview接口以及控制驱动模块对输入信号和输出信号进行采集。使用实验连接线将输入、输出信号与Labview接口以及控制驱动模块的模拟输入口相连接,可以选择其AI0-AI7八个通道的任意两个。连接好实验箱与电脑的USB数据线,打开leaSaC实验上位机的波特图功能选项,进行频率特性测试。根据实验测得二阶系统闭环幅频特性曲线,如何得到其谐振峰值和谐振频率谐振时间电容或电感两端电压变化一个周期的时间称为谐振周期,谐振周期的倒数称为谐振频率。所以谐振频率就是这样定义的。它与电容C和电感L的参数有关,即:f=1/(2*π*√LC),相应的角频率w=2*π*f=1/√LC。此时XL=Xc,电路呈纯阻性,电路阻抗的模为最小。在输入电压Ui为定值时,电路中的电流达到最大值,且与输入电压Ui同相位。从理论上讲,此时 Ui=Ur=U0,UL=Uc=QUi,式中的Q称为电路的品质因数。谐振频率 - 有关参数谐振时间电容或电感两锻电压变化一个周期的时间称为谐振周期,谐振周期的倒数称为谐振频率。所谓谐振频率就是这样定义的。它与电容C和电感L的参数有关,即:f=1/√LC。如何计算电路的谐振频率?谐振电路都有一个特点,容抗等于感抗,电路呈阻性那么就有ωL=1/ωC因为LC都是有知条件,那么可以把谐振的频率点算出来品质因数Q=ωL/R,所谓品质因数如果为28,那么并联的谐振电路就是电流减少了28倍;如果是串联的谐振电路,那么就是电压增加了28倍。那么现在串联谐振点下的电压为施加的电压乘以品质因数如果已知条件告诉你的施加电压为峰值,那么就直接相乘;如果已知条件告诉你的施加电压为有效值,那么还需要将算出来的电压再乘以1.414得出峰值。二阶系统的实测的频率特性与仿真频率特性相比较有何相同和差异?控制系统参数十分重要当WSCC动态数据库不能重现1996年8月10日的故障时,研究人员修改了仿真中使用的模型,在加入了AGC模型和直流输电控制模型,修改了汽轮机调速器模型和电压控制模型后,仿真得到的系统频率和电压变化曲线与实测曲线便比较接近了,但仍不能从仿真中得到系统振荡。后修改了功率送出端(加拿大侧)的负荷模型,即从静态指数模型改为动态电动机模型,或从指数模型改为恒功率模型后,振荡就可以从仿真中得到了。负荷模型何以能起到这么大的作用这是在控制系统的帮助下实现的。本来在功率送出端负荷模型从指数模型改为恒功率模型时应该是有利于稳定的,因为恒功率模型比指数模型能吸收更多的功率。但事故分析中的结论却正好相反,这是由于通过PSS参数整定错误造成的。