联立方程怎么解?
发布网友
发布时间:2022-05-05 07:34
我来回答
共2个回答
热心网友
时间:2023-10-15 16:07
解方程的时候我们会用到记号=(等号)。=的左侧被称为左边,右侧被称为右边。此时,等号就相当于天平。也就是说,我们将左右两侧平衡的状态用=来表示,若同时在=左右两边进行相同的操作,“平衡”不会被打破,=可以保留。
也就是说:
①=两边同时加上相同的数字,等号不改变。
②=两边同时减去相同的数字,等号不改变。
③=两边同时乘以相同的数字,等号不改变。
④=两边同时除以(0除外)相同的数字,等号不改变。
①~④即为“可以任意加到等式上的变形”。
解方程的时候,可以像这样将等式多次变形以单独求得x和y,得出“x=……,y=……”。
此外,计算联立方程时的操作基本遵循①~④,另外,联立方程还具备如下性质:
A=B,C=D
当上述两式成立时,可进行如下操作而不改变等号。
A+C=B+D……⑤
A-C=B-D……⑥
⑤的操作被称为“等号两边相加”,⑥的操作被称为“等式两边相减”。
那么,我们以标题为例试解方程。
首先将上面的式子两边同乘以3,下面的式子两边同乘以2,调整y的系数,可得到
然后,将两个式子“等号两边相加”。得到13x=26
两边同除以13,可得x=2。
解y的时候,可以像之前一样再次调整x的系数,也可以直接将x=2代入3x-2y=4,得6-2y=4,所以y=1。
本节课的主题是使用心算求解方程式。因此:
①调整y的系数的时候,首先要考虑前一项的等式应乘以多少倍、后一项的等式应乘以多少倍。本题中,我们将前一项等式乘以3,后一项等式乘以2,之后进行“等号两边相加”的操作。
②在这里,我们关注x的系数,将前一项等式的系数3乘以3,后一项等式的系数2乘以2。心算得到3×3+2×2=13。
③这样我们就可以消除y项,接着计算右边的常数项即可:
4×3+7×2=26
④将13和26记在脑中,计算“
”即可得到答案,x=2。
像这样,心算时我们可以先调整y的系数将其消除,然后依次计算“x的系数”和“常数项”,最后“除以x的系数”即可。
下面要介绍的这种方法只适用于一些较为特殊的情况,在上式中,首先将等号两边相加得到5x+5y=15,同除以5,则x+y=3。
也就是说1个x和1个y的和为3。
因此若有2个x,2个y,则和为6。将本式与前一项式对比,可得x=2(之后步骤省略)。
像这样熟悉等式的变形规则之后,我们就可以任意操作等式以便于求解。接下来只需不断练习,找到更简单的方法就可以了。
热心网友
时间:2023-10-15 16:08
将两个或两个以上的方程组合起来,就是联立做方程组。
联立方程式:方程式是数学中很普通的概念。如果方程式含有一个以上的未知数时,就有一个以上的方程式。有几个未知数就须有几个方程式,这样方程式中的各个未知数才能有确定的数值解。这些方程式联合起来组成一组,叫联立方程式。
联立方程式可表示多种事物之间的复杂关系,在生产和科研中有着广泛的应用。把若干个方程合在一起研究,使其中的未知数同时满足每一个方程的一组方程。能同时满足方程组中每个方程的未知数的值,称为方程组的“解”。求出它所有解的过程称为“解方程组”。
扩展资料:
联立方程组的解法:
举例:如解方程组 {3x-y=-2;2y+5x=26
1、代入法:将1式中 y=3x+2 代入2 式得到 6x+4+5x=26 得 x=2 再代入1式得到 3×2+2=y 即 y=8 方程组解为 {x=2, y=8
2、消元法:1式×2+2式得到:6x+5x=-4+26 得 x=2 代入2式得到 2y+10=26 得 y=8
解法很多,基本的是这两种。
热心网友
时间:2023-10-15 16:07
解方程的时候我们会用到记号=(等号)。=的左侧被称为左边,右侧被称为右边。此时,等号就相当于天平。也就是说,我们将左右两侧平衡的状态用=来表示,若同时在=左右两边进行相同的操作,“平衡”不会被打破,=可以保留。
也就是说:
①=两边同时加上相同的数字,等号不改变。
②=两边同时减去相同的数字,等号不改变。
③=两边同时乘以相同的数字,等号不改变。
④=两边同时除以(0除外)相同的数字,等号不改变。
①~④即为“可以任意加到等式上的变形”。
解方程的时候,可以像这样将等式多次变形以单独求得x和y,得出“x=……,y=……”。
此外,计算联立方程时的操作基本遵循①~④,另外,联立方程还具备如下性质:
A=B,C=D
当上述两式成立时,可进行如下操作而不改变等号。
A+C=B+D……⑤
A-C=B-D……⑥
⑤的操作被称为“等号两边相加”,⑥的操作被称为“等式两边相减”。
那么,我们以标题为例试解方程。
首先将上面的式子两边同乘以3,下面的式子两边同乘以2,调整y的系数,可得到
然后,将两个式子“等号两边相加”。得到13x=26
两边同除以13,可得x=2。
解y的时候,可以像之前一样再次调整x的系数,也可以直接将x=2代入3x-2y=4,得6-2y=4,所以y=1。
本节课的主题是使用心算求解方程式。因此:
①调整y的系数的时候,首先要考虑前一项的等式应乘以多少倍、后一项的等式应乘以多少倍。本题中,我们将前一项等式乘以3,后一项等式乘以2,之后进行“等号两边相加”的操作。
②在这里,我们关注x的系数,将前一项等式的系数3乘以3,后一项等式的系数2乘以2。心算得到3×3+2×2=13。
③这样我们就可以消除y项,接着计算右边的常数项即可:
4×3+7×2=26
④将13和26记在脑中,计算“
”即可得到答案,x=2。
像这样,心算时我们可以先调整y的系数将其消除,然后依次计算“x的系数”和“常数项”,最后“除以x的系数”即可。
下面要介绍的这种方法只适用于一些较为特殊的情况,在上式中,首先将等号两边相加得到5x+5y=15,同除以5,则x+y=3。
也就是说1个x和1个y的和为3。
因此若有2个x,2个y,则和为6。将本式与前一项式对比,可得x=2(之后步骤省略)。
像这样熟悉等式的变形规则之后,我们就可以任意操作等式以便于求解。接下来只需不断练习,找到更简单的方法就可以了。
热心网友
时间:2023-10-15 16:08
将两个或两个以上的方程组合起来,就是联立做方程组。
联立方程式:方程式是数学中很普通的概念。如果方程式含有一个以上的未知数时,就有一个以上的方程式。有几个未知数就须有几个方程式,这样方程式中的各个未知数才能有确定的数值解。这些方程式联合起来组成一组,叫联立方程式。
联立方程式可表示多种事物之间的复杂关系,在生产和科研中有着广泛的应用。把若干个方程合在一起研究,使其中的未知数同时满足每一个方程的一组方程。能同时满足方程组中每个方程的未知数的值,称为方程组的“解”。求出它所有解的过程称为“解方程组”。
扩展资料:
联立方程组的解法:
举例:如解方程组 {3x-y=-2;2y+5x=26
1、代入法:将1式中 y=3x+2 代入2 式得到 6x+4+5x=26 得 x=2 再代入1式得到 3×2+2=y 即 y=8 方程组解为 {x=2, y=8
2、消元法:1式×2+2式得到:6x+5x=-4+26 得 x=2 代入2式得到 2y+10=26 得 y=8
解法很多,基本的是这两种。