如图1,点A在y轴的正半轴上,以OA为边作等边三角形AOC.(1)点B是x轴正...
发布网友
发布时间:2024-02-25 12:57
我来回答
共1个回答
热心网友
时间:2024-03-02 09:13
(1)解:如下图:分别以A和D为圆心,AD为半径画弧,取在第一象限的交点E,连接AE、DE,则三角形ADE是所求的等边三角形.
(2)∠ACE的大小不发生变化,总等于90°,
理由:
根据题意,有AD=AE,AO=AC,
∠OAD+∠CAD=∠CAE+∠CAD=60°,
∴∠OAD=∠CAE,
在△ACE和△AOD中
AE=AD∠EAC=∠OADAO=AC,
∴△ACE≌△AOD(SAS)
∴∠ACE=∠AOD=90°,
即∠ACE的大小不发生变化,总等于90°.
(3)解:第二个结论②FA平分∠OFE′是正确的,
理由是:过A分别作AM⊥OD′于M,AN⊥CE′于N,
在△OAD′和△CAE′中
AE′=AD′∠E′AC=∠D′AOAO=AC,
∵△OAD′≌△CAE′(SAS),
∴CE′=OD′,
∴AM=AN(全等三角形的对应边上的高相等),
∵AN⊥CE′,AM⊥OD′,
∴∠AFN=∠AFM,
即FA平分∠OFE,∴②正确;
∵FE和OF不相等,
∴∠FAE不一定等于∠FAO,
∵∠EAD′=∠CAO=60°,
∴∠D′AF不一定等于∠FAC,
∴①错误;
即只有②正确.