不等式穿线法
发布网友
发布时间:2022-05-05 03:02
我来回答
共3个回答
热心网友
时间:2023-10-08 15:54
穿针引线法”,又称“数轴穿根法”或“数轴标根法”
第一步:通过不等式的诸多性质对不等式进行移项,使得右侧为0。(注意:一定要保证x前的系数为正数)
例如:将x^3-2x^2-x+2>0化为(x-2)(x-1)(x+1)>0
第二步:将不等号换成等号解出所有根。
例如:(x-2)(x-1)(x+1)=0的根为:x1=2,x2=1,x3=-1
第三步:在数轴上从左到右依次标出各根。
例如:-1 1 2
第三步:画穿根线:以数轴为标准,从“最右根”的左上方穿过根,往右下画线,然后又穿过“次右根”上去,一上一下依次穿过各根。
第四步:观察不等号,如果不等号为“>”,则取数轴上方,穿跟线以内的范围;如果不等号为“<”则取数轴下方,穿跟线以内的范围。
例如:
若求(x-2)(x-1)(x+1)>0的根。
在数轴上标根得:-1 1 2
画穿根线:由右上方开始穿根。
因为不等号威“>”则取数轴上方,穿跟线以内的范围。即:-1<x<1或x>2。
奇透偶不透即假如有两个解都是同一个数字 这个数字要按照两个数字穿~~~如(x-1)^=0 两个解都是1 那么穿的时候不要透过1
热心网友
时间:2023-10-08 15:55
"数轴穿根法"又称"数轴标根法" .简单记为"奇穿过,偶弹回"或"自上而下,从右到左,奇次根一穿而过,偶次根一穿不过。".
学习,是指通过阅读、听讲、思考、研究、实践等途径获得知识和技能的过程。学习分为狭义与广义两种:
狭义:通过阅读、听讲、研究、观察、理解、探索、实验、实践等手段获得知识或技能的过程,是一种使个体可以得到持续变化(知识和技能,方法与过程,情感与价值的改善和升华)的行为方式。例如通过学校教育获得知识的过程。
广义:是人在生活过程中,通过获得经验而产生的行为或行为潜能的相对持久为方式。
社会上总会出现一种很奇怪的现象,一些人嘴上埋怨着老板对他不好,工资待遇太低什么的,却忽略了自己本身就是懒懒散散,毫无价值。
自古以来,人们就会说着“因果循环”,这话真不假,你种什么因,就会得到什么果。这就是不好好学习酿成的后果,那么学习有什么重要性呢?
物以类聚人以群分,什么样水平的人,就会处在什么样的环境中。更会渐渐明白自己是什么样的能力。了解自己的能力,交到同水平的朋友,自己个人能力越高,自然朋友质量也越高。
在大多数情况下,学习越好,自身修养也会随着其提升。同样都是有钱人,暴发户摆弄钱财只会让人觉得俗,而真正有知识的人,气质就会很不一样。
高端大气的公司以及产品是万万离不了知识的,只有在知识上不输给别人,才可以在别的地方不输别人。
孩子的教育要从小抓起,家长什么样孩子很大几率会变成什么样。只有将自己的水平提升,才会教育出更好的孩子。而不是一个目光短浅的人。
因为有文化的父母会给孩子带去更多的在成长方面的的帮助,而如果孩子有一个有文化的父母,通常会在未来的道路上,生活得更好,更顺畅。
学习是非常的重要,学习的好坏最终决定朋友的质量、自身修养和后代教育等方面,所以平时在学习中要努力。
热心网友
时间:2023-10-08 15:55
中学阶段学生经常会遇到解不等式的问题,而在分解因式过程中都很顺利,但是却在书写结果上犯了难,需要分析很久,这里就介绍一种解高次不等式的小技巧--穿针法。
开启分步阅读模式
工具材料:
不等式的相关知识
纸,笔
操作方法
01
观察下面的题目,了解题意,清晰解题思路。
02
整理,将不等式化为标准形式,即不等号左边是因式积的形式,右边是0。这里x的系数一定要是正数。
03
标根,求出不等式的根,并在数轴上依次标出。
04
穿线,用一条曲线从右上方开始从右到左,从上到下依次穿过各根相应的点。注意偶次重根穿而不过,奇次重根要穿过,即奇穿偶不穿。
05
写解集,x轴下方的部分表示不等式小于0的部分,x轴上方的部分表示不等式大于0的部分。如果不等式含等于号,则包括各端点。否则不包括。
06
关于奇穿偶不穿举个例子。