微分方程问题,求解答!155
发布网友
发布时间:2023-11-25 20:41
我来回答
共2个回答
热心网友
时间:2024-12-01 20:36
令x=e^t,则dx/dt=e^t
而y'=dy/dx=dy/dt * dt/dx=dy/dt *1/e^t,
故xy' =dy/dt
而y''=(dy/dx)/dx=(dy/dt *1/e^t) /dt * dt/dx,
于是
(dy/dt *1/e^t) /dt
=(dy/dt)/dt *1/e^t - dy/dt *1/e^t
=d²y/dt² * 1/e^t - dy/dt *1/e^t
即y''=(dy/dt *1/e^t) /dt * dt/dx
=d²y/dt² * 1/e^2t - dy/dt *1/e^2t
所以x² *y"=d²y/dt² - dy/dt,
因此x² *y''+axy'+by=f(x)可以化简为
d²y/dt² - dy/dt + a*dy/dt +by=f(e^t),
即
d²y/dt² +(a-1)dy/dt +by=f(e^t)
热心网友
时间:2024-12-01 20:36
欧拉方程或许可以帮助你!原式=D(D-1)y+aDy+b=F(e^t);
原因你少求了一次导
是的不?