数学分析中的典型问题与方法(裴礼文)第二版403页例4.5.12(收敛性)中的解1的0、 π怎么会是奇点呢?
发布网友
发布时间:2022-05-02 21:34
我来回答
共1个回答
热心网友
时间:2023-10-09 14:23
奇点的判断需要根据α来讨论,书上的写法并不好,比较严谨的*是0和π有可能是奇点。
奇性也分好几种,比如sinx/x^α在[0,1]上的积分,那么x=0就可能是奇点
α<=0的时候0不是奇点。
0<α<=1的时候0是可去奇点,这种一般也当作不是奇点,但是先要进行判断才知道这种是普通的Riemann积分而不是广义Riemann积分,稍微复杂一点的函数不判断是一眼看不出来的,所以这种有可能产生奇性的地方也要分析。
α>1的时候0就是真的奇点了,当然也分弱奇性和强奇性,这种是必然要仔细分析的了。