求(xsinx)/[1+(cosx)^2]在0到∏上的定积分
发布网友
发布时间:2022-05-02 21:11
我来回答
共1个回答
热心网友
时间:2022-06-27 06:56
令t=π-x,则
∫(0~π) xsinx/[1+(cosx)^2]dx
=∫(π~0) (π-t)sint/[1+(cost)^2](-dt)
=∫(0~π) (π-t)sint/[1+(cost)^2]dt
=π∫(0~π) sint/[1+(cost)^2]dt-∫(0~π) tsint/[1+(cost)^2]dt
所以,∫(0~π) xsinx/[1+(cosx)^2]dx=π/2×∫(0~π) sint/[1+(cost)^2]dt,原函数是-arctan(cosx),所以利用牛顿-莱布尼兹公式得
∫(0~π) xsinx/[1+(cosx)^2]dx=π/2×π/2=π^2/4