设f(x)在x=0的某邻域内连续,且lim x→0 [xf(x)-ln(1+x)]/x^2=2,求...
发布网友
发布时间:2023-12-22 13:51
我来回答
共1个回答
热心网友
时间:2024-07-24 11:27
lim x→0 [xf(x)-ln(1+x)]/x^2=2
[xf(x)-ln(1+x)]/x^2=2+a a是一个无穷小量,lim x→0 a=0
这就相当于 lim x→0 f(x)=A 那么f(x)=A+a a是一个无穷小量。lim x→0 a=0。这是无穷小引理。
下面解之。
已知f(x)在x=0的某邻域内连续,所以,极限值等于函数值
f(0)=lim x→0 f(x)=lim x→0 [(2+a)x^2+ln(1+x)]/x =洛必达法则=limx→0 2(2+a)x+1/(1+x) =1
f(0)=1
f'(0)=lim x→0 [f(x)-f(0)]/x =lim x→0 [f(x)-1]/x =lim x→0 [(2+a)x^2+ln(1+x)-1]/x 同样用洛必达法则,得f'(0)=1